
�����������

�	
�	 �
����

��� �
����� ��� ��� ���� �����
 ���

��������� �������� ������ ������������

 ��� ��� ��! ������ �� ������"�����

����������� ������� ��� �� ����

c© Joint Institute for Nuclear
Research, 2004

�
����#�	#
�	 �����������
���#�$
%&'
#(�)#%*&#�+,*#�-&),$#.-/#��01�%)�-#�-%&)-.1
�.),&%#��1.)+'&%&)
#2+%*#�&%2�)3#�00&

#%�#��1.)+4.%+�-
�.10�1.%+�-#�&
�1%
#.-/#�.2#�.%.

�-�1+-& /.%. .05�+
+%+�- 6���7
$
%&' (�) %*& ��01�%)�- �-%&)-.1 �.),&% ���
1.)+'&%&) 6���7 .% %*& ���8 9��� +
 &:�1.+-&/ +-)&
�&0% �(/&
+,- .-/ +'�1&'&-�
%.%+�-8 ;.
&/ �- %*& /+
%)+;�%&/ /.%. .<5�+
+%+�- .-/ �)�0&

+-,
$
%&' ����	 ��(%�
2.)& '�/�1&

�&0+(+0 (�) %*+
 +'�1&'&-%.%+�- 6/&�&-/&-% �- ��� /.%. 0�-%&-%

.-/ *.)/2.)& 1.$��%7 .)& /+
0�

&/ ;)+&(1$ +- 0�'�.)+
�- 2+%* %*�
& (�) %*& �+,*
�-&),$ ��1.)+'&%&) 6���7 .% %*& ���8 9���	 �
&) .00&

 '&%*�/
 ;�%* %�).2
/.%. .-/ %�)&
�1%
 �(��1.)+4.%+�- 0.10�1.%+�-
 �(%*& ��� .-/ ��� .)& /+
0�

&/	

�*& +-�&
%+,.%+�- *.
 ;&&- �&)(�)'&/ .% %*& =&3
1&) .-/ >.1/+- �.;�).%�)$
�(#�+,*#�-&),+&
8#9���	

��''�-+0.%+�-#�(#%*	�+-%#�-
%+%�%&#(�)#��01&.)#�&
&.)0*	#��;-.8#����

?<@ABC#D	 E	 �����������
FG<HIJK#<LBMN#ONPPKQ#<#@ONRIPPKJ#OB<H@ABJ#S#MIT@RUHNHNJ
CKVG<RIPGW#ABRXMGTNYGG#G#Z<KMKJ[#ONPPKJ
ORX#CK<BSB\PIM]IHGVI<SB]B#ABRXMGJIHMN#G#ABRXMGJIHMN
PN#CP@HMIPPIW#JG^IPG#P@SRBHMBPN

_N<<JNHMGCN`H<X NMQGHISH@MN G MINRGTNYGX <G<HIJK <LBMN ONPPKQ 6/.%.
.05�+
+%+�-8 ���7 ORX ABRXMGJIHMN PN CP@HMIPPIW JG^IPG P@SRBHMBPN 6�-%&)�
-.1 �.),&% ��1.)+'&%&)8 ���7 abc d?e?8 B<PBCNPPKI PN MN<AMIOIRIPPBW <G�
<HIJI <LBMN G BLMNLBHSG ONPPKQ ����	 fMNHSB BL<@gON`H<X <AIYGhGVI<SGI
ORX ONPPBW MINRGTNYGG AMB]MNJJPKI JBO@RG8 TNCG<XiGI BH NAANMNHPB]B <B�
<HNCN G QNMNSHIMN <BLGMNIJBW GPhBMJNYGG ���ABRXMGJIHMN8 C <MNCPIPGG < HN�
SBCKJG ORX CK<BSB\PIM]IHGVI<SB]B ABRXMGJIHMN 6�+,* �-&),$ ��1.)+'&%&)8
���7 abc d?e?	 dAG<KCN`H<X AMIOB<HNCRXIJKI ABRUTBCNHIRXJ <AB<BLK OB�
<H@AN S MIT@RUHNHNJ CKVG<RIPGW ABRXMGTNYGG G Z<KMKJ[ONPPKJ @SNTNPPKQ
ABRXMGJIHMBC	

_NLBHN CKABRPIPN C aNLBMNHBMGG CK<BSGQ \PIM]GW GJ	 b	 ?	 bIS<RIMN
G#D	 j	 kNROGPN#d?e?	

FBBLiIPGI#dLlIOGPIPPB]B#GP<HGH@HN#XOIMPKQ#G<<RIOBCNPGW	#m@LPN8#����

INTRODUCTION

At present the data acquisition (DAQ) and slow control systems, based on
electronics in the CAMAC standard and computers with the so-called IBM PC
compatible architecture (referenced as ©Intel i386ª below), are still used for
physics experiments with a rather low speed of data acquisition and transfer.
Such systems survive due to existence of a great assortment of the CAMAC
hardware modules, availability of the ISA/PCI adapters for the CAMAC crate
controllers, and relatively low cost of mentioned equipment. In particular, on-line
electronics of the HE [2] and the IT [1] polarimeters are based on a CAMAC
hardware.

The operating system (OS) used on the on-line computer(s) determines what
kind of the DAQ system design should be chosen, since the adequate OS selection
can essentially simplify implementation, maintenance, and using of the DAQ
system.

A UNIX-like OSs are optimal for a wide range of DAQ and slow control
tasks. UNIX is a multiprocess and multiuser OS with powerful mechanisms for
inter-process and inter-computer communications, support of advanced network-
ing and graphics interfaces, and extended tools for the software design. Resource
usage for the OS UNIX working itself is very small and appears negligible for
Intel i386 computers with CPUs of i486 class and higher. Such features of UNIX-
like OSs as high portability of programming, existence of free distributions with
complete sources, and approximately unlimited quantity of the already existing
software, are also very attractive. FreeBSD is one of such free UNIX-like OSs,
enough stable, reliable, modern, and dynamically developed simultaneously due
to its adequate design policy. So, the distributed data acquisition and processing
system qdpb, described in detail in [3], is implemented under UNIX-like OS
FreeBSD.

DAQ system implementations for High Energy and Nuclotron Internal Target
Polarimeters are based now on the framework, provided by the qdpb system,
see [4] for more details about HEP DAQ internals. ITP DAQ is designed in a
very similar manner, as we can see in section 1. The present paper concentrates
primarily on the user's point of view to these DAQ systems.

The text below highlights the names of the ˇles and software packages as
italic text, C language constructions and literals reproduced without changes Å as
typewriter text. The reference to manual page, for example named ©qwertyª

1

and situated in the 9th section, is printed as qwerty(9), the reference to section in
this report Ä as ©see section 2ª. The subjects of substitution by an actual value are
enclosed in the angle brackets, for example <event_kind>. All the trademarks
mentioned in the present paper are properties of their respective owners.

1. HEP AND ITP DAQ SYSTEMS IMPLEMENTATION NOTES

Very compact nature of HEP and ITP CAMAC hardware allows one to
concentrate the whole corresponding code in the single C header ˇle for each
polarimeter Ä azhpol hardware.h and intpol hardware.h, which contains:

• #define'd constants for numbers of CAMAC stations, functions, sub-
addresses, etc.;

• macros intended to hide details of work with CAMAC and the raw data
format from the user programming level.

HEP and ITP handlers of CAMAC interrupts are based on these constants
and macros as well as on the kernel context interfaces bpio(9) and packet(9),
provided by the qdpb system. The handler for each serviced CAMAC interrupt
checks its validity, reads CAMAC, encapsulates the obtained data in the qdpb
packet and puts this packet into the branchpoint buffer.

To manipulate each CAMAC interrupt handler, two utilities are provided
Ä for conˇguration (azhpolconf / intpolconf) and control (azhpoloper /
intpoloper).

To control the whole HEP / ITP DAQ system, we use a makeˇle with targets,
which represent some operator actions: load, unload, pause, continue, etc.
The operator can manipulate the DAQ simply by make(1)'ing some target without
mediation of any supervisor utility. This solution is chosen due to a very compact
nature of HEP / ITP DAQs.

The high-level codes dependent of the polarimeters are grouped together in
the libpol software library, which contains:

• C declarations and implementation of the programming representation of
the polarimeter data content;

• declarations of the packet (event) classiˇcation and routines for handling
the packet types.

We read information from CAMAC in some raw binary format, which de-
pends on CAMAC modules ©geographyª, and so on. This format needs to be hid-
den from the user level for many reasons, and it is hidden by
azhpol hardware.h / intpol hardware.h macros and format conversion functions.
To represent the data at the user level, we deˇne some C structures, named
<polarimeter_name>_<event_kind>, one per event type. So, polarization cal-
culators can operate with ˇeld names instead of offsets, array indices, etc. Con-
versions of the data from binary to structured format and vise versa are performed
by b2s_<event_kind>() and s2b_<event_kind>() functions, respectively.

2

The packet (or event) classiˇcation was developed initially to implement
the SPHERE on-line and off-line software, see [5]. Generally speaking, we in-
troduce some symbolic names for integer numbers, associated with each event
type, produced by the DAQ system Å for example, beginning of the acceler-
ator burst (CYC_BEG), end of the accelerator burst (CYC_END), trigger of type 0
(DAT_0), etc. For HEP / ITP there is only one event type Å AZHPOL_CYC_END
/ INTPOL_CYC_END. The event type number is the qdpb packet type number:
packet.head.type (see also section 2).

HEP / ITP DAQ uses at least writer(1) work module and
bpget(1) and netpipes(1) service modules from the generic software modules as-
sortment provided by the qdpb system. Implementation of the modules mentioned
above is independent either of the speciˇc setup hardware layout or experimental
data contents. But HEP / ITP speciˇc software modules, namely the polarization
values calculators azhpol / intpol and CGI-style control utility polar cgi, depend
on them.

HEP / ITP polarization calculator reads the packet stream and for each ob-
tained packet of type AZHPOL_CYC_END / INTPOL_CYC_END it calculates the po-
larization value and error and updates the output ˇles, available through HTTP
(see section 3). The polar cgi utility is used to serve these HTTP requests, in
particular:

• to start the polarization calculator;

• to stop the polarization calculator;

• to change the user comments;

• to show the history of already completed runs∗ of the polarization calculator.

At the request to change of the HEP / ITP user comments a polar cgi utility
updates the corresponding ˇle in the usercomm(5) format. Such ˇles are read by
the HEP / ITP polarization calculators at:

• startup;

• termination;

• arrive each AZHPOL_CYC_END / INTPOL_CYC_END packet (may be optional).

All HEP / ITP polarization calculator instances are executed on the HTTP
server (currently crab.jinr.ru) and obtain the input packet stream from the
local branch point (in case of HEP) or from the remote one via netpipes(1) (in
case of ITP). Namely, on the machine which hosts the ITP DAQ system (currently
dhe043.jinr.ru) the server part of the socket connection (faucet(1) utility) is
launched and executes bpget(1) with output into the network socket for each
obtained request on connection. These requests are issued by the client parts

∗Polarization calculations run is a single execution of the polarization calculator main() function.

3

of the socket connection (hose(1) utility), executed by polar cgi(1) on the HTTP
server crab.jinr.ru during IT polarization calculator startup. The same scheme
needs to be used for discussed in section 2 obtaining the raw data stream from
the HEP / ITP DAQ systems.

2. RAW HEP / ITP DATA OBTAINING

The HEP / ITP DAQ system encapsulates HEP / ITP raw binary data into
qdpb's packets (see also [3]), which has the following format:

/* packet.h : */
typedef struct {

header head; /* packet header */
#define DATA_MAX (sizeof(header) * 99)

char data[DATA_MAX]; /* packet body */
} packet;

typedef struct {
...
struct timeval tv; /* packet "originating" time, 4+4 bytes */
...
unsigned short type; /* packet type, 2 bytes */
...

} header;

/* sys/time.h : */
struct timeval {

long tv_sec; /* seconds since 00:00:00 January 1, 1970 */
long tv_usec; /* and microseconds */

};
The stream of such packets is written on the disk storage as the HEP / ITP

raw data ˇles by writer work modules (see [3]), which are executed locally on
the HEP and ITP DAQ hosts (currently crab.jinr.ru and dhe043.jinr.ru,
respectively). These ˇles are an ©ofˇcialª dataset.

Due to existence of the originating time value within each qdpb data packet,
a simple method of ©tailoringª the HEP / ITP data with some experimental setup
data can be recommended. Under each modern UNIX-like OS the standard
utilities, for example, ntpd(8), are available for the system clock synchronization.
If the system clocks of the HEP / ITP DAQ hosts, producing HEP / ITP data
with ©time stampsª, and of the some experimental setup DAQ hosts (let name
one of them as extdaqhost below), are synchronized from the same source,
it will be possible to reconstruct correspondence between the HEP / ITP and
experimental setup data originating from the same accelerator burst by the simple

4

time stamps comparison at an arbitrary moment in the future. (Of course, DAQ
on the extdaqhost should produce its own data with some kind of originating
time stamps, too.)

Users, who want to apply raw HEP / ITP data in the on-line or off-line
analysis, can be provided with the following access methods:

1. (True on-line) Experimental setup DAQ event builder (EVB) executed
on the evbhost host accepts the packet stream from crab.jinr.ru /
dhe043.jinr.ru through the network socket connection with TCP/IP pro-
tocol as the nonstructured bytes sequence without positioning.∗

Required: at the programming level: EVB needs to follow
• qdpb's application program interface (API): packet.c, packet.h,

see [3]

• HEP / ITP's API: eazhpol.h / eintpol.h, fazhpol.c / ˇntpol.c, fPO-
LAR.h, see [4] for API details

at the command level:
• system clocks synchronization by ntpd

• using netpipes(1)
Advantages:

• HEP / ITP data transportation as soon as possible

• critical resources (CPU, disk subsystem) usage on the evbhost
and crab.jinr.ru / dhe043.jinr.ru hosts as small as possible

• adequate programming model
©Disadvantagesª:

• programming efforts required

2. (Semi-on-line) qdpb's utility writer executed on the evbhost host accepts
the packet stream from the crab.jinr.ru / dhe043.jinr.ru through the
network socket with netpipes(1) mediation and produces HEP / ITP data
ˇles on the local ˇlesystem. EVB reads these ˇles.

Required: at the programming level:
• EVB needs to follow HEP / ITP's API: eazhpol.h / eintpol.h,

fazhpol.c / ˇntpol.c, fPOLAR.h, see [4] for API details, and

• can extract ©time stampsª (packet.head.tv)
at the command level:
• system clocks synchronization by ntpd

• using netpipes(1), writer(1)
Advantages:

• slightly less programming efforts than for method 1

∗netpipes(1) package can be used to simplify work with sockets into UNIX streams manner
(like stdin reading from UNIX pipe).

5

• critical resources (CPU, disk subsystem) usage on the
crab.jinr.ru / dhe043.jinr.ru host (not for evbhost !) as
small as possible

Disadvantages:
• nonadequate programming model (EVB accesses HEP / ITP data

as ˇles instead of the stream)

• critical resources (CPU, disk subsystem) usage on the evbhost
host is increased

3. (Semi-off-line) Filesystem with HEP / ITP ©ofˇcialª data ˇles is exported by
NFS mechanism for the evbhost from the crab.jinr.ru /
dhe043.jinr.ru and EVB reads these ˇles.
Required: at the programming level:

• EVB needs to follow HEP / ITP's API: eazhpol.h / eintpol.h,
fazhpol.c / ˇntpol.c, fPOLAR.h, see [4] for API details, and

• can extract ©time stampsª (packet.head.tv)
at the command level:
• system clocks synchronization by ntpd
• export/mount NFS from HEP / ITP DAQ hosts to evbhost

Disadvantages:
• nonadequate programming model (EVB accesses HEP / ITP data

as ˇles instead of the stream)
• NFS is neither secure nor reliable enough for ©synchronousª ac-

cess
• critical resources (CPU, disk subsystem) usage on the
crab.jinr.ru / dhe043.jinr.ru is maximal through all the
methods mentioned in the present paper

4. (Off-line only) HEP / ITP whole ©ofˇcialª dataset obtained by arbitrary
methods (see below) after the accelerator run termination.
Required: at the programming level:

• off-line software needs to follow HEP / ITP's API: eazhpol.h /
eintpol.h, fazhpol.c / ˇntpol.c, fPOLAR.h, see [4] for API details,
and

• can extract ©time stampsª (packet.head.tv)
at the command level:
• system clocks synchronization by ntpd during all the accelerator

run
• network (ftp, scp, etc.) or other (�oppies, CDÄROMs) access to

HEP / ITP dataˇles on the crab.jinr.ru / dhe043.jinr.ru
after the run termination

Advantages:
• least programming efforts
• least command level efforts

Disadvantages:
• method ˇts only the off-line.

6

3. HTTP ACCESS TO POLARIZATION CALCULATION RESULTS

Results of polarization calculations for HE and IT Polarimeters of the LHE,
JINR are accumulated on the HTTP server (currently crab.jinr.ru,
159.93.18.110), so the user needs only HTTP client (WWWÄbrowser) of any
�avour (Netscape, MSIE, . . . , without graphics information Ä lynx) to access the
results.

According to the functionality of the azhpol and intpol polarization calcu-
lators (see section 1), three working modes are possible: the so-called static

Fig. 1. Start form for the static run (page http://crab.jinr.ru/˜camac/static)

7

Fig. 2. Static run results (page http://crab.jinr.ru/˜camac/static/azhpol)

run∗, dynamic run, and viewing of the current static run results. History viewing
of already terminated static runs is also possible.

1. The purpose of the static run mode is to perform reference polarization
calculations by the corresponding polarimeter personnel: in the static/azhpol
directory Å for HEP, in the static/intpol directory Å for ITP. Only one static
run is permitted simultaneously for each polarimeter. Any authorised (by HTTP
username/password) user can launch a static run, terminate the already started
one, change current comments at any time. The static run may be launched with
and without termination condition(s). If these conditions are provided, a request
to start the next runs automatically after previous run termination under the same

∗Term ©runª introduced in section 1.

8

Fig. 3. Change comments form (generated by the polar cgi)

conditions may or may not be given. For all cases an immediate termination
(by Stop buttons on the start page and current run page) is permitted for any
authorised user. Run termination conditions, which can be requested, are as
follows:

1. to reach the required number of accelerator bursts,

2. to reach the required calculation accuracy.

The request for the second condition alone is not permitted. The both conditions
can be given but fulˇllment of even one of them is enough to terminate the run.

Page http://crab.jinr.ru/~camac/static contains a start form for the
static run (see Figure 1), after its submission the user obtains in responce a link to
the static run results http://crab.jinr.ru/~camac/static/ {azhpol,intpol}
(see Figure 2). At change comments request the user obtains a separate page (see

9

Fig. 4. History viewing page (generated by the polar cgi), enter from
http://crab.jinr.ru/˜camac/static

Figure 3) and after its submission he will be returned to the start page again. The
start page also contains a form for history viewing, after its submission the user
obtains a history page (see Figure 4).

2. The purpose of the dynamic run mode is to perform private polariza-
tion calculations by the experimental setup personnel. More than one dynamic
run is permitted simultaneously (limited by the system implementation) for each
polarimeter. Any user (possibly not from any host) can launch the dynamic

10

run, but only the same user can terminate it (by Stop button in the HTML page
corresponding to this dynamic run). The dynamic run may be launched only
with termination condition(s) provided and only without the request to start next
runs automatically. The termination conditions of the dynamic run and logic
of their application are the same as for the static run (see above). The page
http://crab.jinr.ru/~camac/dynamic contains a start form for the dynamic
run, after its submission the user obtains in responce a link to the dynamic run
results (unpredictable temporary name will be used, so one must not forget this
name otherwise you won't be able to see your dynamic run results). Dynamic run
results are deleted just after its termination, so be careful to save (by your HTTP
client) the dynamic run ˇnal page as soon as possible, if you need it. Due to this
nature of the dynamic run the change comments and history viewing services are
not provided.

3. The purpose of viewing the current static run results is to provide reference
results of polarization calculations for the experimental setup personnel.

Any user (possibly not from any host) can view the corresponding pages
http://crab.jinr.ru/~camac/static/{azhpol,intpol}, each of them also con-
tains a form for history viewing.

CONCLUSIONS

The HEP DAQ system with polarization calculation results to be presented
via HTTP was used during a number of polarized runs of the Synchrophasotron
and Nuclotron Å Jun'2001, Oct'2001, Nov'2002 and Dec'2002 without serious
problems of stability and functionality. The ITP DAQ system with results pre-
sented in a similar scheme was successfully tested during the polarized run of
the Nuclotron in December 2002. The presented scheme of polarization calcula-
tion distributions is extendible easily to serve more polarimeters, as well as the
described design of the HEP and ITP DAQ systems.

ACKNOWLEDGEMENTS

The author has a pleasure to thank Yu. K. Pilipenko for initiation of the
presented developments; S. G. Reznikov and S. V. Afanasiev Ä for useful discus-
sions, help in testing and some code contribution; L. S. Zolin, G. D. Stoletov and
V. N. Zhmyrov Å for help with polarization calculations; and N. M. Piskunov Å
for the interest to polarimeters raw data obtaining.

Investigations was supported in part by the RFBR grant N 02Ä02Ä16024.

11

REFERENCES

1. Anisimov Yu.S. et al. Polarimeter for Nuclotron internal beam // Particles
and Nuclei Letters (in Russian), 2004, v.1, N.1[118], p.68Ä79.

2. Azhgirey L.S. et al. // Pribory i Tekhnika Eksperimenta (in Russian), 1997,
N.1, p.51.

3. Gritsaj K.I., Isupov A.Yu. A trial of distributed portable data acquisition
and processing system implementation: the qdpb Å Data Processing with
Branchpoints. JINR Communication E10Ä2001Ä116, Dubna, 2001.

4. Isupov A.Yu. DAQ system for High Energy Polarimeter at the LHE, JINR:
implementation based on the qdpb (Data Processing with Branchpoints) sys-
tem. JINR Communication E10Ä2001Ä198, Dubna, 2001.

5. Isupov A.Yu. SPHERE DAQ and off-line systems: implementation based on
the qdpb system. JINR Communication E10Ä2003Ä187, Dubna, 2003.

Received on January 27, 2004.

Šµ··¥±Éµ· ’. …. �µ¶¥±µ

�µ¤¶¨¸ ´µ ¢ ¶¥Î ÉÓ 10.03.2004.
”µ·³ É 60× 90/16. �Ê³ £ µË¸¥É´ Ö. �¥Î ÉÓ µË¸¥É´ Ö.

“¸². ¶¥Î. ². 0,93. “Î.-¨§¤. ². 1,27. ’¨· ¦ 290 Ô±§. ‡ ± § º 54313.

ˆ§¤ É¥²Ó¸±¨° µÉ¤¥² �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°
141980, £. „Ê¡´ , Œµ¸±µ¢¸± Ö µ¡²., Ê². †µ²¨µ-ŠÕ·¨, 6.

E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/

