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1. INTRODUCTION

Experimenters showed that the lifetime τ of unstable particles moving with
velocity v is equal to τ0γ, where τ0 is the lifetime of the particle at rest and
γ = (1− v2/c2)−1/2. Usual explanation of the fact is based on the special theory
of relativity. For example, M�ller (1972) sets forth it as follows:

©In view of the fact that an arbitrary physical system can be used
as a clock, we see that any physical system which is moving relative to
a system of inertia must have a slower course of development than the
same system at rest. Consider for instance a radioactive process. The
mean life τ of the radioactive substance, when moving with a velocity
v, will thus be larger than the mean life τ0 when the substance is at
rest. From (2.36) we obtain immediately τ = (1 − v2/c2)−1/2τ0ª.

This argumentation may be complemented by the following possible deˇn-
ition of the unit of time which radioactive substance provides: this is the time
interval during which the amount of the substance decreases twice, e.g.

However, the standard clocks of the relativity theory are used when obtaining
Eq. (2.36)

∆t = t2 − t1 = γ(t′2 − t′1) = (1 − v2/c2)−1/2∆τ

which M�ller mentions. He begins the derivation of this equation with the phrase:

©Consider a standard clock C′ which is placed at rest in S′ at a
point on the x′-axis with the coordinate x′ = x′

1ª.

However, such a quantum clock as an unstable particle cannot be at rest (i.e.,
cannot have zero velocity or zero momentum) and simultaneously be at a deˇnite
point (due to the quantum uncertainty relation). So, the standard derivation of
the moving clock dilation is inapplicable for the quantum clock. The related
quantum-mechanical derivation must contain some reservations and corrections.
Here another way of deriving the time dilation is used: to ˇnd relativistic quantum
decay law of a moving unstable particle (momentum p �= 0) and to compare it
with the decay law of the particle at rest. Both the laws refer to one Lorentz frame
(e.g., laboratory frame). Lorentz transformations of the space-time coordinates
are not needed as well as the space coordinates themselves.

1



This approach to the derivation of the time dilation was used by Exner (1983)
and Stefanovich (1996).

A simple derivation of the probability amplitude Ap(t) of the decay (more
exactly nondecay) of the particle with momentum p is suggested in Sect. 2.
Distinctions from Exner and Stefanovich derivations are discussed.

Let us deˇne the terminology used below. The equation τp = τ0γ is equiva-
lent to the the equation

|Ap(t)|2 = |A0(t/γ)|2 (1)

if |Ap|2 and |A0|2 depend upon t as

|Ap(t)|2 ∼ exp(−t/τp), |A0(t)|2 ∼ exp(−t/τ0).

Eq. (1) or the substitution t → t/γ used in Eq. (1) will be called Einstein
dilation ED (in this respect see also Eq. (2.37) in [M�ller, 1972]).

Calculations of quantum probabilities |Ap(t)|2 and |A0(t)|2 show that ED
does not hold exactly. Numerical calculations were performed by Stefanovich
(1996). Here analytical evaluation of Ap(t) is carried out, see Sect. 3 and Appen-
dix. It allows us to determine the region of times t, where ED is approximately
valid, and its accuracy. It also shows that ED fails under some conditions. In
particular, I shall consider in Sect. 4 a variant of the quantum clock for which
appreciable deviations from ED take place at all times.

For conclusion see Sect. 5. The analytical evaluation of Ap(t) is presented
in Appendix.

2. NONDECAY LAW OF MOVING UNSTABLE PARTICLE

Let us consider a relativistic theory which describes unstable particles, prod-
ucts of their decay, and the corresponding interactions. A ˇeld theory may be an
example. Such a theory must contain operators of total energy and momentum
Ĥ , P̂ (the generators of time and space translations), total angular momentum,
and generators of Lorentz boosts.

Suppose that at the initial moment t = 0 there is one unstable system (particle)
having deˇnite momentum p′. As there are no other particles p′ is an eigenvalue
of the total momentum P̂. The state vector Ψp′ of this system is the related P̂
eigenvector which may be represented in the momentum representation as

〈�p|Ψ�p′〉 = δ�p,�p′ψ0. (2)

Here ψ0 describes the unstable system in its rest frame. For example, ψ0 may
describe an excited state of the hydrogen atom in the atom rest frame. In Eq. (2),
δ�p,�p′ is the Kronecker symbol: I suppose that P̂ has a discrete spectrum (the
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system is in a large space volume and usual periodicity conditions are imposed
or the volume opposite boundaries are identiˇed). Thus, Ψp′ has the unit norm.

Consider a common eigenvector Φp′µ of P̂ and Ĥ. Similarly to Eq. (2) one
has

〈�p|Φ�p′µ〉 = δ�p,�p′φ0µ. (3)

Here φ0µ is the common Ĥ and P̂ eigenvector corresponding to the zero eigen-

value of P̂. The related Ĥ eigenvalue may be called the mass µ. Let us expand
Ψp′ in vectors Φ�p′µ

Ψp′ = Sµc(µ)Φ�p′µ. (4)

Here Sµ denotes sum and/or integral over µ (it will be reˇned below). I suppose
that c(µ) in Eq. (4) does not depend on p′. It follows from Eqs. (2)Ä(4) that

ψ0 = Sµc(µ)φ0µ. (5)

One may consider Eq. (5) as a possible concrete deˇnition of the vector ψ0.
Let us determine the eigenvalue Ep′ of Ĥ which corresponds to the common

eigenvector Φ�p′µ of Ĥ and P̂, p′ �= 0. (Ep′ assumes the value µ if p′ = 0). In
relativistic theory E2

p′ − p′2 is the Lorentz invariant. From

E2
p′ − p′2 = E2

0 = µ2 (6)

the known relativistic formula Ep′ =
√

p′2 + µ2 follows. So we have

ĤΦpµ =
√

p2 + µ2Φpµ (7)

(the prime over p is omitted). It follows from Eqs. (4) and (7) that

Ψp(t) = e−iHtΨp = Sµc(µ)Φpµ exp(−it
√

p2 + µ2). (8)

So the probability amplitude of the nondecay (survival amplitude) is

Ap(t) ≡ 〈Ψp, e
−iHtΨp〉 = Sµ|c(µ)|2 exp(−it

√
p2 + µ2). (9)

The state Ψp is called unstable if Ap(t) → 0 as t → ∞. This property holds only
if Sµ in Eq. (9) is integral over continual µ values. Further, the spectrum of the
Hamiltonian H must be bounded from below. Let us choose the energy origin so
that the lower bound in Sµ would be zero. Thus Sµ in Eq. (9) must denote the
integral over µ from zero to, e.g., inˇnity.

When p = 0 Eq. (8) turns into the known equation for the probability
amplitude of nondecay of the unstable system at rest, e.g., see [Fonda et al.,
1978].

Eq. (8) was obtained by Stefanovich (1996) in a different way. He deˇned
Ψp as Upψ0 where Up represents Lorentz transformation from the rest frame of
unstable particle to the frame where its momentum is p. Here Ψp is deˇned by
Eq. (2) and only one relativistic formula, Eq. (6), is used.
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3. DILATION OF MOVING UNSTABLE PARTICLE DECAY

Let us calculate and compare the nondecay law Ap(t) of moving unstable
particle and nondecay law A0(t) of the particle at rest. For this purpose |c(µ)|2 is
needed, see Eq. (9). It is possible to calculate |c(µ)|2 using solvable models, e.g.,
see [Levy, 1959], [Alzetta, d'Ambrogio, 1966], [Gi-Chol Cho, 1993], [Horwitz,
1995]. Here the known simpliˇed representation is used (cf. [Stefanovich, 1996])

|c(µ)|2 =
Γ
2π

[
(µ − m)2 + Γ2/4

]−1
. (10)

In general Γ and m are functions of µ, see [Messiah, 1961], [Goldberger, Watson,
1964]. Here Γ and m are supposed to be constants such that Γ/m � 1 (this is
true for all observable unstable systems). I hope that using Eq. (10) allows us to
obtain a faithful qualitative notion on the relation of Ap(t) and A0(t).

3.1. In the Appendix the main contributions to Ap(t) and A0(t) are calcu-
lated using Eq. (10) for all times except extremely small ones t < 1/m.

A0(t) =
Γ
2π

∫ ∞

0

dµ
[
(µ − m)2 + Γ2/4

]−1
exp(−itµ)

∼= e−itme−Γt/2 − i

2π

Γ
m

1
mt

, tm 	 1, (11)

Ap(t) =
Γ
2π

∫ ∞

0

dµ
[
(µ − m)2 + Γ2/4

]−1
exp(−it

√
p2 + µ2)

∼= exp[−i
√

p2 + m2(1 − α)] exp[−Γt(1 + α)/2γ] (12)

−1
2
(2π)−1/2 Γ

m

p

m
(pt)−1/2 exp(−ipt + iπ/4).

Eq. (12) is true if t 	 1/m and pt 	 1. The latter condition does not make it
possible to get Eq. (11) from Eq. (12) by putting p = 0;

γ =
√

p2 + m2/m = (1 − v2/c2)−1/2,

α =
1
8

Γ2

p2 + m2

p2

p2 + m2
=

1
8

Γ2

m2

γ2 − 1
γ4

.
(13)

Eqs. (11) and (12) contain terms proportional to exp(−Γt/2) and
exp(−Γt(1 + α)/2γ). Let us call them exponential terms (ET).

Besides ET the equations include terms containing small factors Γ/m and
proportional to the inverse powers of t. They are small as compared to ET
during several decades of lifetimes. However, they dominate at sufˇciently large
t. For their discussion see, e.g., [Fonda et al., 1978], [Norman et al., 1988] and
references therein.
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3.2. The exponential term in Eq. (12) is close to exp(−itmγ − Γt/2γ)
because α � 1. Therefore, |Ap(t)|2 almost coincides with |A0(t/γ)|2 at the
times t when ETs dominate. So, ED approximately holds at these times. Let us
estimate corrections to the dilation. One obtains using Eqs. (11) and (12):

{|Ap(t)|2 − |A0(t/γ)|2}/|A0(t/γ)|2 ∼= Γtα/γ. (14)

Here the difference in the curly brackets decreases when t increases because both
minuend and subtrahend decrease as exp(−Γt/γ). Therefore, the deviation of
|Ap(t)|2 from |A0(t/γ)|2 should be characterized by the ratio of this difference
to |A0(t/γ)|2. The ratio is equal to Γtα/γ and grows as t increases. However,
it is extremely small even if, e.g., Γt ∼ 100 because of α � 1. One cannot
consider still greater times because then nonexponential terms will dominate in
Eqs. (11) and (12). It follows from Eqs. (14) and (13) that the maximal deviation
occurs when γ2 = 5/3.

The estimation shows that measuring deviation from ED in the exponential
time region needs much more accuracy than is achieved in existing experiments
(which is about 0.1 − 0.2 %), see [Bailey et al., 1977], [Farley, 1992].

The same conclusion was obtained by Stefanovich (1996) by means of nu-
merical calculations of the difference |Ap(t)|2 − |A0(t/γ)|2 for Γ/m = 2 · 10−4

and several values of t and γ. Note that my analytical estimate gives much
smaller values for the difference, as compared to those presented in Fig. 1 of
Stefanovich's paper.

3.3. ED decisively fails for asymptotically large times when nonexponential
terms in |Ap(t)|2 and |A0(t)|2 dominate. Indeed, then |Ap(t)|2 ∼ t−1 while
|A0(t)|2 ∼ t−2, see Eqs. (11) and (12). So, the former is delayed as compared
to the latter but this is not ED t → t/γ.

For the same reason ED fails also in the transient (preasymptotical) region
of times when exponential terms are of the same order as the asymptotical ones.

It is appropriate to note here that the asymptotic behaviour of the nondecay
amplitude is sensitive to the Γ(µ) behaviour at small µ (remind that Γ is here
supposed to be a constant). It is likely that Ap(t) and A0(t) have different
asymptotic inverse power behaviours at any Γ(µ).

However, when asymptotic terms begin to dominate the decay is almost
completed and we have nothing to observe. So far experimenters fail to measure
nonexponential asymptotics of the decay law, e.g., see [Norman et al., 1988] and
references therein.

In the next section, I consider another variant of the quantum clock in which
ED fails for all times under some condition.

3.4. Exner (1983) claimed the validity of ED for the decay law of moving
unstable particles (see his section V). Let us comment on his approach.

Instead of the initial state Ψp with deˇnite momentum Exner considered a
packet with almost deˇnite momentum. In this case, the deˇnition (9) of the
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survival amplitude is not suitable. Indeed, then the survival amplitude changes
with time not only because of the decay but also because of the packet diffusion.
Besides, the corresponding amplitude of moving particles changes due to the
initial packet displacement at the vector vt, v being the packet average velocity
(under the displacement our Ψp does not change up to an unessential phase factor).
So, in the case one must use a more general deˇnition of the survival law, e.g.,
see Eq. (3a) in [Exner, 1983]. Nevertheless, Exner used deˇnition (9) which
in his approach may be considered as a simpliˇed approximate deˇnition of the
nondecay law. He stipulated that his claim on the ED validity holds provided this
approximation is admissible. In particular, he made the reservation that the decay
law is considered in the time region where the decay law is exponential. Exner did
not estimate the validity of his approximation. A reˇnement of Exner's approach
may result in ED violation, although small. This would agree with the conclusion
obtained in Subsect. 3.2: ED holds only approximately when exponential terms
dominate.

4. K0-MESON-LIKE SYSTEMS AND EINSTEIN DILATION

Consider two unstable particles Ks and Kl with different masses and life-
times, i.e., different distributions |cs(µ)|2 and |cl(µ)|2, see Eq. (10). I call the
particles Ks and Kl because the known mesons Ks and Kl may be familiar
examples. However, here their masses ms and ml are not supposed to be close.
As usual, let us suppose that Γs/ms � 1 and Γl/ml � 1. Let Ks(t) and Kl(t)
denote the corresponding survival amplitudes of the particles at rest, see Eq. (11)
where Γ and m are replaced by Γs, ms and Γl, ml, respectively.

Let us suppose that at t = 0 one may prepare the state

[|Ks〉 + |Kl〉] /
√

2 ≡ |K0〉. (15)

For example, in the case of real K0 meson the state |K0〉 is the product of the
reaction π− + p → K0 + Λ0. Consider the survival amplitude of the state

K(t) =
1
2

([|Ks〉 + |Kl〉] , exp(−iHt) [|Ks〉 + |Kl〉])

=
1
2

(|Ks〉, exp(−iHt)|Ks〉) +
1
2

(|Kl〉, exp(−iHt)|Kl〉) (16)

≡ 1
2
Ks(t) +

1
2
Kl(t).

I supposed above that the vector |Ks〉 (which describes the particle Ks) as
well as all vectors of the Ks decay products are orthogonal to |Kl〉 and to its
decay product vectors. This supposition is valid for the real mesons Ks and
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Kl because Ks and Kl and their decay products have different CP-parities (CP
conservation holds almost exactly). Neglecting nonexponential terms in Eq. (11)
for Ks(t) and Kl(t) one obtains for the K0 survival probability |K(t)|2

|K(t)|2 =
1
4

[
e−tΓs + e−tΓl + 2 exp(−t(Γs + Γl)/2) cos(ms − ml)t

]
(17)

cf. the Eq. (7.83) in [Perkins, 1987]. Eq. (17) may be represented in the form

|K(t)|2 = exp(−t(Γs + Γl)/2)
[
cos2 t(ms − ml)/2 + sinh2 t(Γs − Γl)/4

]
(18)

which presents more visually oscillations which |K(t)|2 has. For example, when
tΓs � 1 and tΓl � 1 we have |K(t)|2 ∼= cos2 t(ms − ml)/2.

Analogously, consider the moving K0 system having nonzero deˇnite p. The
related survival amplitude Kp(t) is a superposition [Ksp(t) + Klp(t)] /

√
2, where

Ksp(t) and Klp(t) are deˇned by equations of the kind of Eq. (12) (Γ and m
being replaced by Γs, ms and Γl, ml). As above, only exponential terms are
retained. The small corrections αs and αl are also neglected. Thus,

Ksp(t) ∼= exp
(
−it

√
p2 + m2

s

)
exp(−tΓs/2γs), γs ≡

√
p2 + m2

s/ms, (19)

Klp(t) ∼= exp
(
−it

√
p2 + m2

l

)
exp(−tΓl/2γl), γl ≡

√
p2 + m2

l /ml, (20)

|Kp(t)|2 =
1
2
|Ksp(t) + Klp(t)|2

= exp
(
− t

2

(
Γs

γs
+

Γl

γl

))[
cos2

(
t

2

(√
p2 + m2

s −
√

p2 + m2
l

))

+ sinh2 t

4

(
Γs

γs
− Γl

γl

)]
. (21)

Note. The oscillations which are present in K(t) and Kp(t) allow us to
use the unstable system described by the vector |K0〉 = [|Ks〉 + |Kl〉] /

√
2 as a

quantum clock in a different way as compared with the usual unstable system
(see Introduction). Namely, the unit of time provided by |K(t)|2 may be deˇned
as the period (ms −ml)−1 of |K(t)|2 oscillations, ms −ml being the oscillation
frequency. Analogously, the moving K0 determines the unit of time ∆−1

p , ∆p =√
p2 + m2

s−
√

p2 + m2
l being the oscillation frequency of |Kp(t)|2, see Eq. (21).

We can see from Eqs. (18) and (21) that |Kp(t)|2 can be obtained from
|K(t)|2 by the replacements

Γs → Γs/γs, Γl → Γl/γl, ∆m → ∆p, (22)

∆m ≡ ms − ml, ∆p ≡
√

p2 + m2
s −

√
p2 + m2

l . (23)
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Multiplying and dividing ∆p by
√

p2 + m2
s +

√
p2 + m2

l one obtains for ∆p

∆p = (m2
s − m2

l )
[√

p2 + m2
s +

√
p2 + m2

l

]−1

= ∆m/γ̃,

γ̃ =
[√

p2 + m2
s +

√
p2 + m2

l

]
/(ms + ml). (24)

So the last replacement in (22) may be represented as ∆m → ∆m/γ̃. The
replacements (22) cannot be reduced to one replacement t → t/γ if γs �= γl.
So ED decisively fails in this case. The inequality γs �= γl holds if ms �= ml

(provided p is not too small: if p � ms, ml then γs
∼= γl

∼= γ̃ ∼= 1).
ED holds approximately if ms

∼= ml (this is the case for real Ks and Kl).
Then γs

∼= γl
∼= γ̃ and (22) may be reduced to t → t/γ.

5. CONCLUSION

Evaluations of the decay law of moving unstable particles show that Einstein
time dilation t → t/γ (ED) is not the exact kinematical law of relativistic quantum
mechanics. The deviation from ED is small for usual unstable systems when the
time t of the decay does not exceed several decades of lifetimes. The estimation
of the value of the deviation is obtained in Sect. 3, see Eqs. (14) and (13). It
linearly grows as t increases (in the above region) and is maximal at γ2 = 5/3.
It is much less than the achieved experimental accuracy. It was shown that ED
does not hold decisively for larger times when the decay is nonexponential. ED
fails for all times in the case of unstable system of the kind K0 = (Ks +Kl)/

√
2

with appreciably different masses ms and ml. More explicitly, in both two latter
cases we have dilations, see Subsect. 3.3 and Eq (22) in Sect. 4, but the dilations
are not Einsteinian. However, experimenters fail to observe nonexponential decay
while K0-meson-like system with ms �= ml are unknown. Thus, for the unstable
decays available now ED turns out to hold approximately with great accuracy
determined here by analytical calculations.

APPENDIX: EVALUATION OF SURVIVAL AMPLITUDE

The survival amplitude of the moving unstable particle follows from Eqs. (9)
and (10)

Ap(t) =
∫ ∞

0

dxw(x) exp(−it
√

p2 + x2), (A.1)

w(x) =
Γ
2π

[
(x − m)2 + Γ2/4

]−1
(A.2)
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Fig. 1. Integration contour for Ap(t). Dotted
line shows the chosen branch cut for the function√

z2 + p2

(µ is replaced by x). To calcu-
late (A.1) the integration contour
C is chosen, see Fig. 1. The inte-
grand in (A.1) is the single-valued
analytical function inside C (with
the pole at the point m − iΓ/2).
Its branch is chosen which is pos-
itive on the real positive semiaxis
x: arg

√
z2 + p2 = 0 when z = x.

Then on the quarter of the circle
CR the argument of

√
z2 + p2 co-

incides with arg z (the radius R of
CR being large) and is zero at the
point x = R, y = 0, and is equal to
−π/2 at the point x = 0, y = −iR.
When z moves along Ci from iR
up to the branch point −ip the
arg

√
z2 + p2 does not change re-

maining to be equal to −π/2. This
follows from the equation

arg
√

z2 + p2 =
1
2
[arg(z − ip) + arg(z + ip)]. (A.3)

So on the interval (−iR,−ip) we have
√

z2 + p2 = −i|
√

y2 − p2|. Further as z
passes the point (−ip) the argument of (z − ip) does not change as before while
arg(z + ip) changes by +π in the vicinity of (−ip). Therefore, arg

√
z2 + p2

changes by π/2, see Eq. (A.3), and
√

z2 + p2 becomes positive real being equal

to |
√

p2 − y2|. The above consideration of the behaviour of the chosen branch

of
√

z2 + p2 gives∫
C

dzw(z) exp(−it
√

z2 + p2) =
∫ ∞

0

dxw(x) exp(−it
√

x2 + p2)

+
∫ p

R

(−idy)w(−iy) exp(−t|
√

y2 − p2|) (A.4)

+
∫ 0

p

(−idy)w(−iy) exp(−it|
√

p2 − y2|) = −2πiRes.

Here Res is the residue of the integrand at the pole m − iΓ/2:

Res = (−2πi)−1 exp[−it
√

(m − iΓ/2)2 + p2]. (A.5)

The integral over CR is not written in Eq. (A.4) because it vanishes as R → ∞
due to the Jordan lemma.
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To calculate Ap(t), see Eq. (A.1) and (A.4), we must now compute the
integrals

I∞p = i

∫ ∞

p

dy
Γ
2π

[(iy + m)2 + Γ2/4]−1 exp(−t|
√

y2 − p2|), (A.6)

Ip0 = i

∫ p

0

dy
Γ
2π

[(iy + m)2 + Γ2/4]−1 exp(−it
√

p2 − y2). (A.7)

Let us estimate I∞p. The main contribution to I∞p is due to y values close to
p, if t is not too small. One may suppose, e.g., that t 	 1/m or t > 0.1τ = 0.1/Γ.
In order to obtain an approximate value for I∞p, let us replace (iy + m)2 + Γ2/4
in the integrand by (ip + m)2. Then

I∞p
∼=

iΓ
2π

(ip + m)−2J∞p, J∞p =
∫ ∞

p

dy exp(−t
√

y2 − p2). (A.8)

After the change of variables u =
√

y2 − p2 the integral J∞p reduces to the table
one

J∞p =
∫ ∞

0

du
u√

u2 + p2
e−tu, (A.9)

e.g., see 3.366.3 in [Gradshtein, Ryzhik, 1962]. I shall need the value of J∞p

at pt 	 1 (this means that p is supposed to be not too small). Using formulae
3.366.3 and 8.554 in the cited tables (or immediately by integrating (A.9) by
parts) we get

J∞p
∼= p(pt)−2, (A.10)

|I∞p| =
1
2π

Γ√
p2 + m2

1√
p2 + m2t

1
pt

, mt 	 1, pt 	 1. (A.11)

Now let us estimate Ip0, see Eq. (A.7). After the change of variables v =√
p2 − y2 we get (neglecting Γ2/4)

Ip0 =
iΓ
2π

∫ p

0

dv
v√

p2 − v2
[i
√

p2 − v2 + m]−2 exp(−itv). (A.12)

The values of v close to p bring the main contribution due to the factor
(p2 − v2)−1/2. So,

Ip0
∼=

iΓ
2πm2

{∫ p

0

dvv
cos tv√
p2 − v2

− i

∫ p

0

dvv
sin tv√
p2 − v2

}

≡ iΓ
2πm2

{IC + iIS} . (A.13)
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For the integrals IC and IS see the formula 2.5.8.2 (with β = 1/2) in
[Prudnikov, 2003] (note that in the ˇrst edition of the book there is a misprint in
this formula)

IS =
π

2
pJ1(pt), IC = −π

2
pH1(pt) + p.

Here J1 is the Bessel function and H1 is the Struve function. Using their asymp-
totic expansions (see, e.g., 8.451.1 and 8.554, 8.451.2 in [Gradshtein, Ryzhik,
1962]) one gets at pt 	 1

IS
∼= −

√
π

2
p√
pt

cos(pt + π/4), IC
∼=

√
π

2
p√
pt

sin(pt + π/4), (A.14)

Ip0
∼=

1
2
(2π)−1/2 Γ

m

√
p

m

1√
mt

exp(−ipt + iπ/4), pt 	 1.

We see that the integral I∞p, Eq. (A.11) can be neglected as compared to
Ip0 in the case pt 	 1. Therefore, I∞p is omitted in Eq. (12) for Ap(t).

One can see that Res, Eq. (A.5), dominates in Ap(t) during several decades
of lifetimes while Ip0 gives Ap(t) asymptotics as t → ∞.

The amplitude A0(t) is calculated in the same way, the result being given
by Eq. (11). Our goal is the investigation of the dilation of Ap(t) as compared
to A0(t). For this purpose, one has ˇrst of all to compare Res in Ap(t), see
Eq. (A.5), with Res in A0(t), see the ˇrst term in Eq. (11). Let us represent Res,
Eq. (A.5), in the form best suitable for this comparison (see Subsect. 3.2). As
Γ/m � 1 one may expand

[(m − iΓ/2)2 + p2]1/2 =
√

p2 + m2[1 − (iΓm + Γ2/4)(p2 + m2)−1]1/2

in the series over powers of Γ. Omitting the terms ∼ Γ4 and still lesser ones we
obtain

[(m − iΓ/2)2 + p2]1/2 =
√

p2 + m2(1 − α) − iΓ(1 + α)/2γ + . . . , (A.15)

for α and γ see Eq. (13). Eq. (12) follows from Eqs. (A.1), (A.4), (A.5), (A.14),
(A.15).

Note. Instead of expansion (A.15) Stefanovich (1996) used the expansion of
the square root

√
p2 + x2 in the integrand of (A.1) in series over powers of the

ratio (x − m)[p2 + m2]−1/2. He made the implication that x values close to m
predominate in the integrand because w(x) is peaked when −Γ < x − m < Γ,
Γ/m � 1. Then only the ˇrst terms of the series dominate and |Ap(t)|2 turns
out to be approximately equal to |A0(t/γ)|2 notwithstanding t values, i.e., ED
results for all t. However, my analytical calculation of Ap(t) shows that ED
decisively fails at large t when the decay is not exponential. So Stefanovich's
implication actually is false for large t (e.g., because x values from the interval

11



(m − Γ, m + Γ) are suppressed by fast oscillations of exp(−it
√

p2 + x2) at
large t).

Let us stress that expansion (A.15) (unlike Stefanovich's one) is done after
analytical evaluation of integral (A.1). The validity of (A.15) does not depend on
Stefanovich's implication, only the smallness of Γ/m being essential.

Note also that Stefanovich's expansion does not give an explicit estimation
of the ED violation (which is characterized here by the quantity α, see Eq. (15)).
For this estimation he numerically calculated the involved integrals (for times not
exceeding ten lifetimes, see his Fig. 1).

REFERENCES

Alzetta, A. and d'Ambrogio, E. (1966). Evolution of a resonant state. Nuclear Physics
82, 683-689.

Bailey J. et al. (1977). Measurement of relativistic time dilation for positive and negative
muons in a circular orbit. Nature 268, 301-304.

Exner, P. (1983). Representations of the Poincar�e group associated with unstable particles.
Physical Review D 28, No. 10, 2621-2627.

Farley, F. (1992). The CERN (g-2) measurements. Zeitschrift féur Physik C 56, S88,
Sect. 5.

Fonda, L., Ghirardi, G., and Rimini, A. (1978). Decay theory of unstable quantum
system. Rep. Progr. in Phys. 41, 587, Sect. 3.

Gi-Chol Cho et al. (1993). The time evolution of unstable particles. Progr. Theor. Phys.
90, No. 4, 803-816.

Goldberger, M. and Watson, K. (1964). Collision Theory. John Wiley, New York, Ch. 8.

Gradshtein, I. and Ryzhik, I. (1962). Tables of Integrals, Sums, Series and Products.
GIFML, Moscow.

Horwitz, L. (1995). The unstable system in relativistic quantum mechanics. Foundation
of Physics 25, No. 1, 39-65.

Levy, M. (1959). On the description of unstable particles in quantum ˇeld theory. Nuovo
Cimento 13, No. 1, 115.

Messiah, A. (1961). Quantum Mechanics. North-Holland, Amsterdam, V. 2, Ch. 21.13.

M�ller, C.(1972). The Theory of Relativity. Clarendon Press, Oxford, Ch. 2.6.

Norman, E. et al. (1988). Tests of the exponential decay law at short and long times.
Phys. Rev. Lett. 60, No. 22, 2246.

Perkins, D. (1987). Introduction to High Energy Physics. Addison-Wesley Co., Inc.

Prudnikov, A. P. et al. (2003). Integrals and Series. V. 1, Second edition, Fizmatlit,
Moscow.

Stefanovich, E. (1996). Quantum effects in relativistic decays. Intern. Journ. of Theor.
Phys. 35, No. 12, 2539-2554.

Received on January 23, 2004.



Šµ··¥±Éµ· ’. …. �µ¶¥±µ

�µ¤¶¨¸ ´µ ¢ ¶¥Î ÉÓ 11.02.2004.
”µ·³ É 60× 90/16. �Ê³ £  µË¸¥É´ Ö. �¥Î ÉÓ µË¸¥É´ Ö.

“¸². ¶¥Î. ². 0,93. “Î.-¨§¤. ². 1,22. ’¨· ¦ 415 Ô±§. ‡ ± § º 54299.

ˆ§¤ É¥²Ó¸±¨° µÉ¤¥² �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°
141980, £. „Ê¡´ , Œµ¸±µ¢¸± Ö µ¡²., Ê². †µ²¨µ-ŠÕ·¨, 6.

E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/


