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Solution of 2x2 Matrix Three-Body Calogero Model

We define a three-body 2x2 matrix exactly solvable model. This model has
a very similar form to the Calogero three-body model. We find the ground-state

eigenvector and give the spectrum of this model.
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In the famous papers [1] the Calogero model was defined. In the three-body
case the Hamiltonian is given as
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associated with a long-range interaction. One can exactly solve this Calogero
model and find out the complete set of energy eigenvalues as

where g = v(v — 1), ie. v = , which is the coupling constant

3
B = (§+3u+n1+n2+n3>w, ®

where n;s are nonnegative integer valued quantum numbers with n; < njiq.
The ground state eigenfunction is given by

e®(®) = exp (—g XQ) ‘(ml —x9)(x1 — x3) (22 — (L’g)‘y ,
X? = 22 + 23 + 22. It was shown by Calogero that the eigenfunctions for this
model can be expressed as
U(z) = e*@U(z),
where \f/(a:) is a polynomial symmetric under permutations of any two z;’s.

The operator having these polynomials as eigenfunctions can be obtained by
performing on (1) the gauge rotation

H = e 9@ preal®)

The aim of our paper is to study the 2 x 2 matrix model which seems
very similar to the Calogero model (1). The model is given by means of the
Hamiltonian
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This Hamiltonian is not explicitly symmetric. To obtain a self-adjoint Hamiltonian
we have to define the Hilbert space of the square integrable vector functions
f(x1,22,23) on M, where M = {(ml,xg,xg) s x3 < To < xl}. In this paper
we only solve the equation Hy 21 = A by algebraic means and we do not deal
with the problem of the operator (3) domain. This problem is briefly mentioned
at the end of the paper.

If we introduce the center-of-mass coordinate
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where X € R, 2y; +y2 > 0 and y; + 2y < 0, the Hamiltonian (3) in new
variables is separable, consisting of two parts

H= HO + Hrel
where
3 w?
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For the eigenvalue problem Hzi) (X, Y1, yg) =\ (X, Y1, yg) we can use the
ansatz 1) = Yo(X)¢re1 (y1,42), A = Xo + Arel, Where

Hoto(X) = Xovo(X), 4)

Hrelwrel (yla y2) = )\relwrel (ylv y2) . (5)

The equation (4) is the harmonic oscillator problem for which the ground
state is e~“X"/6 and excitation states are given by Hermit’s polynomials. The

1
spectrum of this operator is <m + 5) w, where m =0, 1, 2, ...



To solve the equation (5) is more complicated. First we introduce 2 x 2
matrices

_ v X X
e — e w(yf+y1y2+y§) _ 21 + +92 } 11 12 7
(Y2 — y1)(2y1 + y2)(y1 + 2y2) Xor Xoo
where
X1 =% -4, X120 =3y —v3),
Xo1 = V3 +y2), Xoo = y? + dy1y2 + v2 .

By direct calculation it is possible to check that
Hrelea = eaK 5
where
K — By + 2w 0
n 0 By+3)w /)

We use this e? for gauge transformation ] = €¢*t) and we obtain

I/_:\[relqz)\(ylv y2) = Arelqz)\(ylv y2) )

where
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After the transformation [2]

21 = —yi — y1y2 — 3,
Z2 = —Y1Y2 (y1 + yz) )



we finally obtain

~ 1
H.oi = 21011 + 320012 — 5 2%822 + (2(4)21 + 37+ 2)81 + 3wze0s+
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The set of vector polynomials

o= X (5 ) )

is a finite-dimensional subspace Vy.

On the space V we will solve the equation

~

Hrel{p\(zh ZQ) = Arel{b\('zh 252) P (8)

where 12 € Vn. The equation (8) together with (6) and (7) gives the system of
the difference equations for A, ; and By 5. If r4+s = N and Aol = (+37+2)w
we obtain
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where s < N — 1. It is easy to show that this system has nonzero solutions iff
u=2N +mn,where n =0, 1, ..., N 4 1. Linearly-independent solutions of this
system are:



The nonzero coefficients are for even n = 2r
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We do not write the systems of the difference equations for A, ; and B, ,,
where r + s = M < N. We only note that there are the solutions of the systems.
The constants (9)—(12) are the initial conditions for these solutions.

In this way we obtain the eigenfunctions Q/J(N,n,l)’ where n =0,1, ..., N,
and zZ(N%Q), where n = 1, 2, ..., N + 1, which correspond to the coefficients
AN_n,n and By_p, , given in (9)—(12). These functions are the solution of the
equation

~

Heatt) (v k) = (2N + 1437 + 20N nk) = ArelV(N,n.k) -
The eigenvalues of the Hamiltonian (3) are A\ = Ay + A.1 and the eigenvalues

1
Ao = <m + 5) w. Therefore the spectrum of (3) is

)
Em,N,n: (m+2N+n+3’Y+ 5)&1, (13)

where m=0,1,2, ..., N=0,1,2,... and n=0,1, ..., N + 1. Moreover,
the eigenvalues with n =1, 2, ..., N have multiplicity 2.



If we compare this spectrum with the spectrum of the Calogero model (2), we
see that the energies of the ground state are different. If we take in the Calogero

9 .
limit ¢ — 0, we obtain energy of the ground state Fy = Z¥ However, if we

5 . .
formally take this limit in our model, we obtain Ey = 3 w. This contradiction

arises from the fact that the transformation ﬁrel = e 2H,e? affects to v > 0
only. For v < 0 there are problems on the boundary, i.e. for 2y; + y2 = 0 and

y1 + 2y2 = 0. It is easy to see that the substitution < zl > _w 2 > leads
2 1

to the exchange v <+ —~. Therefore, the spectrum (13) can be written for v # 0
in the form

5
EnNp = <m+2N—|—n+3|’y|—|—§)w.

But for v = 0 it is not true, because the ground state does not vanish on the
boundary.

Acknowledgements. The research was partially supported by Grant GACR
201/01/0130.

REFERENCES

1. F. Calogero, “Solution of a three-body problem in one dimension”, J. Math. Phys. 10
(1969) 2191-2196;
F. Calogero, “Ground state of a one-dimensional N-body problem”, J. Math. Phys. 10
(1969) 2197-2200;
F. Calogero, “Solution of the one-dimensional N-body problem with quadratic and/or
inversely quadratic pair potentials”, J. Math. Phys. 12 (1971) 419-436.

2. W. Riihl and A. Turbiner, “Exact solvability of the Calogero and Sutherland models”,
Mod. Phys. Lett. A10 (1995) 2213-2222.

Received on January 21, 2004.



Koppexrop T. E. [loneko

Monnuc no B ey b 10.03.2004.
®opm 1 60 X 90/16. Bym r ogcetn 5. Iled Tb ofceTH 4.
Ve ney. 1. 0,68, Yu.-uzn. a1, 0,9. Tup x 315 9k3. 3 k 3 Ne 54326.

W3n tenbekuii otaen OObeANHEHHOTO HHCTHTYT SIICPHBIX MCCIIEHOB HUit
141980, r. dy6H , Mockosck s 06:1., yi. 2Konmno-Kropu, 6.
E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/



