ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

КРИТЕРИИ ЦЕНТРАЛЬНОСТИ НЕУПРУГИХ НУКЛОН-НУКЛОННЫХ СОУДАРЕНИЙ

В. И. Комаров^{а, 1}, Б. Баймурзинова^{а, 6, в}, А. Кунсафина^{а, 6, в}, Д. А. Цирков^{а, 2}

^а Объединенный институт ядерных исследований, Дубна

⁶ Институт ядерной физики, Алма-Ата, Казахстан

^в Евразийский национальный университет им. Л. Н. Гумилева, Нур-Султан

Рассматривается процесс соударения нуклонов с прицельным параметром меньше радиуса кварковой сердцевины нуклонов. Для выделения таких соударений предлагаются критерии их отбора из полного массива событий нуклон-нуклонного взаимодействия.

A process of inelastic nucleon-nucleon collisions with the impact parameter less than a radius of the nucleon quark core is considered. The criteria for selection of such collisions from a full array of the nucleon-nucleon interactions are suggested.

PACS: 44.25.+f; 44.90.+c

введение

Исследование непертурбативной КХД (НПКХД) структуры барионов является фундаментальной задачей физики сильных взаимодействий. Такая структура гарантирует само существование стабильных состояний нуклонов и определяет кардинальные свойства ядерной материи. Основной экспериментальной базой для выяснения НПКХД-структуры барионов являются барионная спектроскопия и короткодействующие нуклон-нуклонные взаимодействия. Максимальная чувствительность нуклон-нуклонных данных в этом аспекте может быть получена в условиях взаимодействия, при которых достигается перекрытие кварковой сердцевины нуклонов и обеспечивается достаточно продолжительное время существования такого перекрытия. Первое условие может выполняться в NN-соударениях с предельно малыми значениями прицельного параметра соударения R: $R < r_{\rm core} \approx 0.4$ фм. Соударения такого рода будем далее называть центральными соударениями. Геометрическая вероятность k таких соударений при ГэВ-ных энергиях довольно велика:

¹E-mail: komarov@jinr.ru

²E-mail: cyrkov@jinr.ru

 $k = \pi r^2 / \sigma_{NN}^{\rm total} = 0.50 \ {\rm fm}^2 / 40 \ {\rm m6} = 0.125$, но доминирующий фон, вызываемый периферическими соударениями, скрывает центральные соударения от детального исследования, и решающую роль приобретают критерии выбора интересующих событий из всего массива соударений.

Критерии центральности при исследовании соударения тяжелых ядер основаны на измерении множественности возникающих в соударении частиц. При этом используется информация о хорошо изученной нуклонной структуре сталкивающихся ядер и достаточно известных свойствах адронов, участвующих во взаимодействии [1,2]. Аналогичная информация в случае соударения самих нуклонов отсутствует, а невысокая множественность продуктов соударения при сравнительно низких энергиях зависит в первую очередь от энергии и не позволяет однозначно судить о центральности. Поэтому в случае NN-соударений нужны специальные критерии центральности. Следует напомнить, что разделение неупругих *pp*-соударений на центральные и периферические было установлено еще в шестидесятые годы прошлого столетия. Наиболее определенные результаты были получены при измерении эмиссии протонов в неупругом инклюзивном процессе $pp \to pX$ при СЦМ-энергиях 4,5–7,6 ГэВ [3]. Было показано, что спектры протонов, испускаемых под углами выше 29° с импульсами выше 1 ГэВ/c (в СЦМ), хорошо следуют распределениям по фазовому пространству для системы двух протонов и определенного числа пионов. Такая статистическая картина резко отличается от картины эмиссии протонов под малыми углами, которая в основном определяется периферическим процессом одиночного и двойного возбуждения барионных резонансов. Доля таких центральных соударений от их полного числа по оценке Андерсона-Коллинса [4] составляла (34 ± 13) %. Сделанный этими авторами анализ показал значительную роль непериферических соударений в неупругих протон-протонных соударениях, но не привел к установлению связи рассмотренной ими центральности с прицельным параметром соударения и определению критериев центральности. А именно такие критерии нужны для выделения событий с перекрытием центрального кора нуклонов. Целью настоящей работы является определение таких критериев. Затрагиваются и энергетические условия, необходимые для эффективного взаимодействия кварковых сердцевин нуклонов.

ВОЗМОЖНЫЙ СЦЕНАРИЙ ПРОТЕКАНИЯ ЦЕНТРАЛЬНЫХ СОУДАРЕНИЙ

Интересующие нас перекрытия центральной области нуклонов могут происходить только при достаточно высокой энергии соударения. Действительно, если кинетическая энергия W сталкивающихся нуклонов ниже величины отталкивательного потенциала $U_{\rm rep}(0)$ NN-взаимодействия при нулевом расстоянии между центрами нуклонов, т. е. $W = \sqrt{s} - 2m_N < U_{\rm rep}(0)$, волновые функции нуклонов не могут перекрыться. Это обстоятельство определяет минимальную энергию $\sqrt{s}_{\rm min}$, обеспечивающую перекрытие:

$$\sqrt{s_{\min}} = U_{\text{rep}}(0) + 2m_N. \tag{1}$$

Для величины $U_{\rm rep}(0)$ известны только отдельные разрозненные значения, полученные для определенных состояний в различных теоретических моделях: 1,2– 2,3 ГэВ [5]; 0,83–1,36 ГэВ [6]; 0,87–1,45 ГэВ [7]; 0,49–0,60 ГэВ [8]. Имея в виду большой разброс таких значений, можно оценить только характерный интервал на уровне 0,5–1 ГэВ, что соответствует минимальной энергии $\sqrt{s_{\min}} \approx 2,4-2,9$ ГэВ, выше которой имеет смысл достаточно надежно рассматривать перекрытие кваркового содержания нуклонов. Строго центральные соударения нуклонов при меньших энергиях представляют собой упругое рассеяние на 180° либо возбуждение одного или обоих нуклонов, оставляющее их обособленными трехкварковыми кластерами с последующим их распадом и испусканием двух нуклонов и мезонов. При энергиях выше $\sqrt{s_{\min}}$ исходная шестикварковая система приобретает вид ансамбля состояний обособленных трехкварковых кластеров и совместной шестикварковой системы, управляемой КХД-симметриями. Преодоление отталкивания сближающихся трехкварковых кластеров означает переход из мезон-барионного состояния в шестикварковое состояние с соответствующими степенями свободы. При этом возможно два кардинально отличающихся канала соударения: упругое взаимодействие, при котором происходит упругое рассеяние трех кварков одного нуклона на трех кварках другого с сохранением структуры обоих нуклонов, и неупругое взаимодействие, при котором по крайней мере одно из кварк-кварковых рассеяний имеет неупругий характер и приводит к существенной трансформации волновой функции нуклонной пары. В этом случае возникает промежуточная возбужденная шестикварковая система, кварковый мешок $(6q)^*$, изучение которого может стать источником новой информации о непертурбативной КХД-структуре нуклонов. Гамильтониан (6q)*-состояния в потенциальном подходе можно выразить как сумму

$$H = \sum_{i=1}^{6} (m_q)_i + \sum_{i=1}^{6} T_i - T_G + \sum_{j>i=1}^{6} V_{ij},$$
(2)

где $(m_q)_i$ означает массу *i*-го кварка, T_i и T_G — операторы кинетической энергии *i*-го кварка и движения центра масс соответственно, а V_{ij} — потенциалы взаимодействия между кварками *i* и *j*. В системе центра масс, пренебрегая взаимодействием между кварками, получим для оценки максимального импульса p_q одного кварка

$$p_q = (s/36 - m_q^2)^{1/2}.$$
(3)

Для порогового значения энергии 2,9 ГэВ, принимая массу конституентного u-, d-кварка $m_q = 0,34$ ГэВ, получим $p_q = 0,34$ ГэВ/c. Эта величина превосходит характерное значение $\Lambda_{\rm conf} = 0,1-0,3$ ГэВ, соответствующее цветовому конфайнменту, так что при энергиях выше порогового значения $\sqrt{s_{\rm min}}$ в центральном соударении может образовываться шестикварковая система, определяемая КХД-степенями свободы. Кардинальным обстоятельством является реализующийся в $(6q)^*$ -системе интервал импульса кварков. Еще в 80-х гг. прошлого века было осознано [9,10], что кварковые системы с импульсами ниже значения $\Lambda_{\chi SB}$, при котором происходит спонтанное нарушение киральной симметрии, находятся в специфическом режиме: кварки в этом режиме являются не токовыми, с массами порядка 2–5 МэВ, а составными, с указанной выше значительной массой; взаимодействие между ними осуществляется обменом глюонами на малых расстояниях ($< 0,1 \ \phi m$), голдстоуновскими бозонами октета π , K, η на средних расстояниях ($0,1-0,5 \ \phi m$) и действием конфайнмента на больших расстояниях ($0,5-1,0 \ \phi m$). Такое взаимодействие предполагается значительно более

сильным, чем в пертурбативной кварк-глюонной системе. В определенных условиях оно может создавать даже квазисвязанные состояния. Поэтому такая система расширяется и распадается медленнее, чем кварк-глюонная система в пертурбативном КХД-режиме ($t_{\rm decay} > 0,4 \ {\rm dm/c} = 1,3 \cdot 10^{-24} \ {\rm c}$), и имеет время для установления промежуточного состояния. Возникающее состояние может иметь как стохастический характер, так и определенную структуру, соответствующую КХД-симметриям. При этом массовый спектр состояния включает в себя не только континуум, но и собственные значения квазисвязанных состояний, которые наблюдаются в виде дибарионных резонансов. Использование центральных соударений нуклонов для поиска такого рода резонансов предлагалось недавно в работе [11]. В любом случае, (6q)*-систему следует рассматривать как шестикварковое кирально-конституентное состояние. Особый характер возникающего состояния обусловлен высокой барионной и энергетической плотностью его материи, так как, имея барионное число B = 2 и СЦМ-энергию \sqrt{s} , кварковая материя сосредоточена в ограниченном объеме порядка $4/3\pi r_{\rm core}^3$.

Значение величины $\Lambda_{\chi SB}$ не определено в настоящее время экспериментально, а теоретические оценки находятся на уровне 1,2 ГэВ/с [10], 0,9 ГэВ/с [12]. В приближениях, сделанных выше для получения равенства (3), принимая $\Lambda_{\chi SB} = 1,2$ ГэВ, можно оценить значение максимальной энергии, при которой еще имеет место кирально-конституентный режим:

$$\sqrt{s_{\max}} \approx 6(\Lambda_{\chi SB}^2 + m_q^2)^{1/2} = 7.5 \ \Gamma \Im B.$$
 (4)

Такая оценка существенно занижена, так как основная часть энергии соударения идет на генерацию мезонного поля. При существенно более высоких энергиях конституентные кварки разрушаются, а возникающие токовые кварки взаимодействуют слабее и не могут образовать сравнительно устойчивую промежуточную систему.

Распад промежуточной системы $(6q)^*$, возникающей в центральных соударениях при энергиях

$$2.9 \lesssim \sqrt{s} \lesssim 7.5 \ \Gamma$$
 \Rightarrow B, (5)

приводит к восстановлению адронных состояний в виде

$$p + p \to (6q)^* \to N + N + \mathfrak{M},\tag{6}$$

где при энергии ниже порога рождения антибарионов $\sqrt{s_{\rm anti}} = 3,8$ ГэВ \mathfrak{M} обозначает систему легких мезонов, преимущественно пионов прямого рождения или распада других легких мезонов σ , ρ , ω , φ . Определенную часть должны составлять каоны парного рождения (исключая из рассмотрения здесь менее вероятный канал рождения гиперонов). Система \mathfrak{M} остается преимущественно мезонной и при энергиях выше $\sqrt{s_{\rm anti}}$, так как выход антибарионов значительно меньше выхода мезонов. Аналогичного типа конечные состояния возникают и при доминирующих периферических соударениях, так что для изучения центральных соударений совершенно необходимо использование специальных критериев.

ИДЕНТИФИКАЦИЯ ЦЕНТРАЛЬНЫХ NN-СОУДАРЕНИЙ

Центральные соударения в упругом канале выделяются *pp*-рассеянием на угол 90°. Энергетическая зависимость такого рассеяния хорошо описывается закономерностью правила счета конституентов, «constituent counting rule» (ССR) [13, 14]. Наблюдаемые малые отклонения, по-видимому, свидетельствуют о незначительности влияния НПКХД-структуры в этих условиях [15, 16] и до настоящего времени не привлекли должного внимания исследователей. Неупругий канал при центральном соударении является доминирующим. Это видно из отношения дифференциального сечения *pp*-рассеяния на 90° к полному сечению центрального соударения, $\pi(r_{\rm core})^2$, деленному на 4π . Действительно, $d\sigma/d\Omega(90°)$ быстро падает с энергией как s^{-10} , согласно ССR, так что если при энергии $\sqrt{s} = 2,9$ ГэВ это отношение равно 0,2, то при $\sqrt{s} = 6$ ГэВ оно составляет уже $5 \cdot 10^{-7}$. Поэтому свойства именно возбужденного промежуточного состояния (6q)* представляют основной интерес для получения информации о НПКХД-структуре NN-взаимодействия.

Образование $(6q)^*$ -системы происходит при взаимном торможении сталкивающихся нуклонов. Этот процесс идет путем упругих и неупругих перерассеяний валентных кварков начального состояния. Такое перерассеяние подавляет продольную компоненту начального импульса $p_0 = (s/4 - m_N^2)^{1/2}$. Исходная кинетическая энергия, соответствующая этой компоненте, распределяется в энергию перестройки начальной структуры нуклонов, в кинетическую энергию, соответствующую приобретаемым поперечным компонентам импульса и в энергию возбуждения мезонного поля. Для строго центрального соударения такой процесс максимально интенсивен, и кварки промежуточного состояния при взаимном торможении теряют начальное доминирование продольных компонент импульса, которые взаимно компенсируются. Соответственно этому, нуклоны, формируемые при переходе $(6q)^*$ в адронное состояние, теряют продольную компоненту импульса и со значительной вероятностью испускаются под углами, близкими к 90° СЦМ. При столкновении нуклонов со значительным прицельным параметром кварки, удаленные от оси соударения, не испытывают перерассеяния с кварками встречного нуклона и сохраняют в среднем продольную компоненту, равную 1/3 ро. При этом нуклоны конечного состояния приобретают продольный импульс и разлетаются вдоль оси соударения в противоположные стороны с тем большим импульсом, чем больше был прицельный параметр соударения. Из этих очевидных соображений следует, что для выделения центральных соударений нужно отбирать события с нуклонами малого продольного импульса, испускаемыми под углами, близкими к 90° СЦМ. Идентификация неупругих центральных соударений становится наиболее эффективной, если отбирать события с испусканием в одну сторону под такими углами обоих конечных нуклонов. В этом случае автоматически исключаются центральные упругие соударения и минимизируется вклад неупругих периферических соударений с нуклонами, разлетающимися вдоль оси соударения в противоположные стороны. Одновременно минимизируется и относительный импульс в паре конечных нуклонов, так что в них проявляется сильное взаимодействие в конечном состоянии. Такое взаимодействие для изоскалярной пары нуклонов приводит к образованию связанного ${}^{3}S_{1} - {}^{3}D_{1}$ состояния, дейтрона, а для изовекторной пары — квазисвязанного ${}^{1}S_{0}$ -состояния, S-волнового дипротона $\{pp\}_{s}$. В дальнейшем, для краткости, такие пары будут называться «объединенными парами». Из сказанного выше следует, что для

Рис. 1. Диаграмма центрального соударения с возбуждением промежуточной шестикварковой системы в *s*-канале реакции и образованием объединенной нуклонной пары в конечном состоянии

отбора центральных соударений целесообразно регистрировать объединенные пары, испускаемые под углами, близкими к 90° СЦМ. Таким образом, первым критерием выделения центральных соударений является [11] регистрация реакций типа

$$N + N \to d(90^\circ) + \mathfrak{M},\tag{7a}$$

$$N + N \to \{pp\}_s(90^\circ) + \mathfrak{M}.$$
(76)

Основное различие реакций (7а) и (7б) состоит в отличии изоспиновых состояний рождающихся мезонных систем, которое влияет на динамику образования объединенных пар, но практически не влияет на кинематику процессов.

Вторым критерием центральности должно быть требование малости размера области взаимодействия:

$$r_{\rm int} < r_{\rm core}.$$
 (8)

1 /0

Размер $r_{\rm int}$ области взаимодействия может быть оценен величиной передаваемого импульса Q, определяющего динамику процесса, $r_{\rm int} \approx 1/Q$. Рассматриваемая реакция представляет собой переход нуклонов начального состояния, имеющих высокий относительный импульс, в объединенную нуклонную пару конечного состояния через возбуждение промежуточного состояния в *s*-канале реакции (см. рис. 1).

При этом каждый из нуклонов начального состояния переходит в состояние одного из нуклонов объединенной пары. Поэтому передаваемый четырехимпульс Q, определяющий процесс, есть $Q = \mathcal{P}_1 - \mathcal{D}/2$, где \mathcal{P}_1 — это импульс одного из начальных нуклонов, а \mathcal{D} — импульс конечной объединенной пары и $r_{\rm int} = 1/(-Q^2)^{1/2}$. Легко убедиться (см. рис. 1), что

$$(-\mathcal{Q}^2)^{1/2} = \frac{1}{2} \left\{ -\left[\sqrt{s} - (m_d^2 + q^2)^{1/2}\right]^2 + \left[s - (2m_N)^2 + q^2\right] \right\}^{1/2},\tag{9}$$

где

$$q = \frac{1}{2\sqrt{s}} \left\{ \left[s - (m_d + m_{\mathfrak{M}})^2 \right] \left[s - (m_d - m_{\mathfrak{M}})^2 \right] \right\}^{1/2}.$$
 (10)

Здесь m_N есть масса нуклона, m_d — масса дейтрона ($\{pp\}_s$ пары) и $m_{\mathfrak{M}}$ — инвариантная масса мезонной системы. Из формул (9), (10) видно, что размер области

Рис. 2. Зависимость размера области взаимодействия от величины инвариантной массы рождаемой мезонной системы и энергии соударения. • — $pp \rightarrow \{pp\}_s \pi^0, \sqrt{s} = 2,2$ ГэВ; • — $pn \rightarrow d\pi^0 \pi^0, \sqrt{s} = 2,38$ ГэВ. 0° и 90° обозначают угол вылета объединенной пары относительно оси реакции

взаимодействия однозначно определяется величиной инвариантной массы $m_{\mathfrak{M}}$ рождаемой мезонной системы и энергией \sqrt{s} соударения. Рис. 2 иллюстрирует эту зависимость. Там же в качестве примера показаны $r_{\rm int}$ для возбуждения дибарионных резонансов в реакциях $pp \rightarrow \{pp\}_s \pi^0$ при $\sqrt{s} = 2,2$ ГэВ [17] и $pn \rightarrow d\pi^0 \pi^0$ при $\sqrt{s} = 2,38$ ГэВ [18]. Передаваемый импульс зависит от угла испускания объединенной пары. Видно, что при испускании под углом 90° соударение происходит в области перекрытия кваркового сердечника нуклонов.

Вариация значения $m_{\mathfrak{M}}$ от минимального значения $m_{\min} = m_{\pi}$ до максимального $m_{\max} = \sqrt{s} - m_d$ при фиксированной энергии изменяет значение импульса q от максимальной величины q_{\max} , определяемой формулой (10), до нуля. Это дает возможность измерить спектр инвариантных масс мезонной системы с помощью измерения импульсного спектра объединенной пары (рис. 3).

Практическую реализуемость предлагаемого критерия центральности возможно оценить следующим образом. Принимая за полное сечение центральных соударений величину $\sigma_{\text{centr}} = \pi r_{\text{core}}^2$ и предполагая изотропию испускания протонов, имеем для дифференциального сечения их испускания под углом 90° величину $d\sigma_{\text{centr}}(90°)/d\Omega_p = r_{\text{core}}^2/4 = 5$ мб/ср. Многочисленные экспериментальные данные (см., например, [19,20]) показывают, что при энергиях 2–20 ГэВ выход дейтронов относительно выхода протонов в широком диапазоне процессов и условий испускания дейтронов составляет около $3 \cdot 10^{-3}$. Поэтому интересующее нас дифференциальное сечение испускания дейтронов составляет $d\sigma_{\text{centr}}(90°)/d\Omega_d \approx 15$ мкб/ср. Приняв телесный угол регистрации $\Omega = 2$ ср и светимость $L = 10^{30}$ см⁻² · с⁻¹ в качестве значений, реалистических для типичных экспериментальных установок на протонных ускорителях при ГэВ-ных энергиях, получим скорость регистрации событий порядка 30 событий

Рис. 3. Кинематическая зависимость инвариантной массы рождаемой мезонной системы от импульса объединенной пары

в секунду. Это означает возможность получения достаточно большого объема информации об интересующих процессах за разумное ускорительное время. Поэтому центральные соударения нуклонов могут стать эффективным испытательным стендом для изучения непертурбативной КХД-структуры нуклонов.

ЗАКЛЮЧЕНИЕ

Рассмотрение предполагаемого сценария центрального NN-соударения позволяет сформулировать критерии экспериментального выделения соударений, приводящих к перекрытию кварковой центральной области нуклонов. Исследование характеристик таких событий может послужить новым перспективным источником информации для выяснения непертурбативной КХД-структуры нуклонов. Соответствующие эксперименты еще не проведены, рассмотрение их непосредственной цели и информации, возможно извлекаемой из них, является в настоящее время актуальной задачей. Подход к этой задаче планируется в последующей публикации.

Авторы благодарны А.В.Куликову и В.И.Кукулину за интерес к проблеме и полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Broniowski W., Florkovski W.* Geometric Relation between Centrality and the Impact Parameter in Relativistic Heavy-Ion Collisions // Phys. Rev. C. 2002. V. 65. P. 024905.
- Das S. J., Giacalone G., Monard P. A., Ollitrault J. Y. Relating Centrality to Impact Parameter in Nucleus–Nucleus Collisions // Phys. Rev. C. 2018. V. 97. P.014905.
- Anderson E. W., Bleser E.J., Collins G.B., Fujii T., Menes J., Turkot F., Carrigan R.A., Edelstein R.M., Hien N.C., McMahon T.J., Nadelhaft I. Proton and Pion Spectra from Proton-Proton Interactions at 10, 20, and 30 GeV/c // Phys. Rev. Lett. 1967. V. 19. P. 198.

- 4. Anderson E. W., Collins G.B. Interpretation of Highly Inelastic Proton-Proton Interactions at 10, 20, and 30 GeV/c // Phys. Rev. Lett. 1967. V. 19. P. 201.
- Maltman K., Isgur N. Nuclear Physics and Quark Model: Six Quarks with Chromodynamics // Phys. Rev. D. 1983. V.29. P.952.
- Stancu F., Pepin S., Glozman L. Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model // Phys. Rev. C. 1997. V. 56. P. 2779.
- Bartz D., Stancu F. NN Interaction in a Goldstone Boson Exchange Model // Phys. Rev. C. 1999. V.60. P.055207.
- Ishii N., Aoki S., Hatsuda T. Nuclear Force from Lattice QCD // Phys. Rev. Lett. 2007. V. 99. P. 022001.
- Shuryak E. V. Two Scales and Phase Transitions in Quantum Chromodynamics // Phys. Lett. B. 1981. V. 10. P. 103.
- Manohar A., Georgi H. Chiral Quarks and the Non-Relativistic Quark Model // Nucl. Phys. B. 1984. P. 234.
- Komarov V. I. On the Possibility of Revealing the Transition of a Baryon Pair State to a Six-Quark Confinement State // Phys. Part. Nucl. Lett. 2018. V. 15. P. 69; JINR Preprint E1-2017-24. Dubna, 2017; arXiv: 17.04.06161v1 [nucl-th].
- 12. *Melnitchouk W., Weise W.* Nucleon Structure Functions from Relativistic Constituent Quarks // Phys. Lett. B. 1994. V. 334. P. 275.
- Matveev V. A., Muradyan R. M., Tavkhelidze A. N. Automodelity in Strong Interactions // Lett. Nuovo Cim. 1972. V. 5. P. 907.
- 14. Brodsky S. J., Farrar G. R. Scaling Laws at Large Transverse Momentum // Phys. Rev. Lett. 1973. V. 31. P. 1153.
- Schremp B., Schremp F. Is Large Angle Exclusive Scattering Controlled by the Hadronic Radius? // Phys. Lett. B. 1975. V.55. P. 303.
- Pire B., Ralston J. P. Fixed Angle Elastic Scattering and the Chromo-Coulomb Phase Shift // Phys. Lett. B. 1982. V. 117. P. 233.
- Komarov V. et al. (ANKE Collab.). Evidence for Excitation of Two Resonance States in the Isovector Two-Baryon System with a Mass of 2.2 GeV/c² // Phys. Rev. C. 2016. V.93. P. 965206.
- Adlarson P. et al. (WASA Collab.). Abashian-Booth-Crowe Effect in Basic Double-Pionic Fusion: A New Resonance? // Phys. Rev. Lett. 2011. V. 106. P. 242302.
- 19. Abramov V. V. High p_T Deuteron and Antideuteron Production in pp and pA Collisions at 70 GeV // Sov. J. Nucl. Phys. 1987. V. 45. P. 845.
- Diddens A. N., Galbraith W., Lillethun E., Manning G., Parham A. G., Taylor A. E., Walker T. G., Wetherel A. M. Particle Production in Proton-Proton Collisions at 19 and 24 GeV/c // Lett. Nuovo Cim. 1964. V.31. P.961.

Получено 13 декабря 2019 г.