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APPLICATION OF THE FOURIER SERIES
FOR PARTICLE DYNAMICS SIMULATION

IN THE PERIODIC MAGNETIC FIELDS
O.E. Shishanin 1

Moscow State Industrial University, Moscow

Given methods emerged in the solution of synchrotron radiation problem in cyclic accelerators [1].
It was necessary to ˇnd a set of differential equations for entire closed orbit instead of description for
separate sections. The best approach turned out to be an expansion of the magnetic ˇeld gradient or
components in the Fourier series. To solve the resulting differential equations with periodic coefˇcients,
the averaging theory had to be extended to the third and fourth orders of accuracy. In addition, an
original procedure was found within the perturbation theory, which yielded the same results.

�·¥¤¸É ¢²¥´´Ò¥ ³¥Éμ¤Ò ¨¸¶μ²Ó§ÊÕÉ¸Ö ¢ ·¥Ï¥´¨¨ § ¤ Î¨ ¸¨´Ì·μÉ·μ´´μ£μ ¨§²ÊÎ¥´¨Ö ¢ Í¨±²¨-
Î¥¸±¨Ì Ê¸±μ·¨É¥²ÖÌ [1]. ‚³¥¸Éμ μ¶¨¸ ´¨Ö μÉ¤¥²Ó´ÒÌ ¸¥±Í¨° ´¥μ¡Ìμ¤¨³μ ¡Ò²μ ´ °É¨ ¸¨¸É¥³Ê
¤¨ËË¥·¥´Í¨ ²Ó´ÒÌ Ê· ¢´¥´¨° ¤²Ö Í¥²μ° § ³±´ÊÉμ° μ·¡¨ÉÒ. ‹ÊÎÏ¨³ ¶μ¤Ìμ¤μ³ μ± § ²μ¸Ó · §²μ-
¦¥´¨¥ £· ¤¨¥´É  ¨²¨ ±μ³¶μ´¥´Éμ¢ ³ £´¨É´μ£μ ¶μ²Ö ¢ ·Ö¤ ”Ê·Ó¥. „²Ö ·¥Ï¥´¨Ö ¶μ²ÊÎ¥´´μ£μ ¤¨Ë-
Ë¥·¥´Í¨ ²Ó´μ£μ Ê· ¢´¥´¨Ö ¸ ¶¥·¨μ¤¨Î¥¸±¨³¨ ±μÔËË¨Í¨¥´É ³¨ É¥μ·¨Ö Ê¸·¥¤´¥´¨Ö ¤μ²¦´  ¡Ò² 
¤μ¸É¨£´ÊÉÓ É·¥ÉÓ¥£μ ¨²¨ Î¥É¢¥·Éμ£μ ¶μ·Ö¤±  ÉμÎ´μ¸É¨. Š Éμ³Ê ¦¥ ¢ · ³± Ì É¥μ·¨¨ ¢μ§³ÊÐ¥´¨°
¡Ò²  ´ °¤¥´  ¨¸Ìμ¤´ Ö ¶·μÍ¥¤Ê· , ±μÉμ· Ö ¤ ²  É¥ ¦¥ ·¥§Ê²ÓÉ ÉÒ.
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1. DERIVATION OF EQUATIONS

Without the loss of generality let us, at ˇrst, consider a speciˇc example, which will be
supplemented by general methods. In our model, an electron rotates in a periodic magnetic
ˇeld H = br−n (b is a constant, n is the ˇeld gradient) along a closed orbit of N elements,
where an element consists successively of a focusing arc section of length a and ˇeld gradi-
ent n1, a straight section of length l1, a defocusing magnet with gradient n2, and again of a
free section of length l2. This is one of the versions of the FODO model, where O stands
for the ˇeld-free section.

If R is the radius of magnet curvature, then a = πR/N , and the length of the entire
orbit is

S = 2πR + Nl1 + Nl2 = 2πR0,

where R0 is the so-called mean radius. Let us assume that the ratio of free run lengths to the
magnet lengths k = (l1 + l2)/2a is a small parameter. Then, R0 = R(1 + k), and the period
of the system, taken in terms of the azimuth angle ϕ, will be deˇned as T = 2π/N .
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The magnetic ˇeld gradient n(ϕ) can be regarded as a staircase function with discontinu-
ities of the ˇrst kind. Expanding n(ϕ) in a Fourier series, we obtain

n(τ) =
a(n1 − n2)

L
+

2
π

∞∑
ν=1

gν(n1 cos ντ1 − n2 cos ντ2), (1)

where τ = Nϕ,

gν = sin πν
a

L

/
ν, L = 2a + l1 + l2, τ1 = τ − πa

L
, τ2 = τ − π

3a + 2l1
L

.

It would be more justiˇed to go from a series to a partial sum in (1), because edge effects
may arise at the boundary of the magnet, and switching from n1 to n2 is smoother. For
example, at ϕ = 0 we get, by the Dirichlet theorem, that n(τ) = n1/2; at ϕ = (3a/2 + l1)/
L(2π/N) (the middle of the second magnet) n(τ) = −n2, and so on.

Finally, the Hill equations of small betatron oscillations in the linear approximation take
the form

d2ρ

dτ2
+

1
N2

(1 − (1 + k)2n(τ))ρ = 0, (2)

d2z

dτ2
+

(1 + k)2

N2
n(τ)z = 0, (3)

where ρ = r − R0.
As to the main orbital motion of the particle, it has some features resulting from switching

back and forth between rotation and rectilinear motion. Since only vertical oscillations affect
the radiation properties, we made some simpliˇcations. We averaged the leading magnetic
ˇeld H0 over the entire period of the system and assumed that the mean radius of the electron
rotation is R0.

Then, the angular velocity can be represented as

ϕ̇ =
ω0

1 + k

[
1 − ρ

R0
+

3
2

ρ2

R2
0

+
∫

n(ϕ)
(

zż

R2
− ρρ̇

R2

)
dt

]
, (4)

where ω0 = ceH0/E.

2. BOGOLIUBOVÄMITROPOLSKY METHOD

Following the averaging theory [2], we represent Eq. (3) in the standard form

dZ

dτ
= ε · G · Z, (5)

where the components of the vector Z are z and (1/ε) dz/dτ . Here, we have

G =
(

0 1
−g(τ) 0

)
, g(τ) = (1 + k)2n(τ),

and ε = 1/N is the small parameter.
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We can consider a more general matrix equation of the form

dZ

dτ
= ε · Y (τ, Z).

For the function Y (τ, Z) the operation of averaging is deˇned as

〈Y (τ, Z)〉 = lim
T→∞

1
T

T∫
0

Y (τ, Z) dτ, (6)

and the integrating operator

Ỹ (τ, ξ) =
∫

[Y (τ, ξ) − 〈Y (τ, ξ)〉] dτ

is introduced. The vector ξ is found from the system

dξ

dτ
= ε〈Y (τ, ξ)〉,

and the ˇrst approximation is deˇned as

Z(τ) = ξ(τ) + εỸ (τ, ξ).

Linear system (5) turns out to be the Caratheodory differential equation system [3, 4].
Indeed, matrix G(τ) is deˇned and is continuous at almost all τ , except those points making
up a set of measure zero. Moreover, it is seen to be limited. Thus, summation of the
matrix elements is possible on each section from the interval (0, 2π). Then, by Theorem 3
from Ch. 1 in [4], the solution of (5) with any initial condition Z(τ0) = Z0 exists in the entire
interval (0, 2π). Since here

|Y (τ, Z2) − Y (τ, Z1)| � |G| · |Z2 − Z1|,

i.e., the Lipschitz condition is fulˇlled, this solution will be the only one. That is why an arbi-
trary choice of the initial point can be used in calculating the trajectory by the matrix method,
where the matrices of each structure are multiplied and a return to the initial point occurs.

Now, let us go back to the general method, which was written for the second approximation
in [5]. With the iteration procedure, where a new correction is successively added, any
approximation can be described.

If we take the ˇrst four orders, we obtain

Z(τ) = ξ +
4∑

i=1

εiYi, (7)

where

Y1 = Ỹ , Y2 =
∂Y

∂ξ
Y1 −

∫
∂Y1

∂ξ
dτ〈Y 〉,

Y3 =
∂Y

∂ξ
Y2 −

∫
∂Y1

∂ξ
dτ

〈
∂Y

∂ξ
Y1

〉
−

∫
∂Y2

∂ξ
dτ〈Y 〉,

Y4 =
∂Y

∂ξ
Y3 −

∫
∂Y1

∂ξ
dτ

〈
∂Y

∂ξ
Y2

〉
−

∫
∂Y2

∂ξ
dτ

〈
∂Y

∂ξ
Y1

〉
−

∫
∂Y3

∂ξ
dτ〈Y 〉.
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According to [2], the error of this approximation is ε5. Now, let us set Y (τ, Z) = G · Z.
Then, from (7) we ˇnd that

Z(τ) =

(
1 +

4∑
i=1

εiGi

)
ξ, (8)

where

dξ

dτ
= ε

〈
G

(
1 +

4∑
i=1

εiGi

)〉
ξ. (9)

Differentiation with respect to the vector ξ can be illustrated by the following example:

∂

∂ξ
Y (τ, ξ) =

⎛⎜⎜⎝
∂

∂ξ1
(g11ξ1 + g12ξ2)

∂

∂ξ2
(g11ξ1 + g12ξ2)

∂

∂ξ1
(g21ξ1 + g22ξ2)

∂

∂ξ2
(g21ξ1 + g22ξ2)

⎞⎟⎟⎠ = G.

The matrices Gi then have the form

G1 = G̃, G2 = ˜GG1 − G̃1〈G〉,

G3 = ˜GG2 − G̃1〈GG1〉 − G̃2〈G〉,

G4 = ˜GG3 − G̃1〈GG2〉 − G̃2〈GG1〉 − G̃3〈G〉.

Expressed in terms of the function g(τ), they are

G1 =

(
0 0

−g̃ 0

)
, G2 =

(
−˜̃g 0

0 ˜̃g
)

,

G3 =

⎛⎜⎝ 0 2˜̃̃g
g̃˜̃g + γ2

z1
˜̃̃
g 0

⎞⎟⎠ , G4 =

⎛⎜⎜⎝
˜̃
g˜̃g + 3γ2

z1

˜̃̃̃
g 0

0 −2g̃
˜̃̃
g −

˜̃
g˜̃g − γ2

z1

˜̃̃̃
g

⎞⎟⎟⎠ .

Here, γ2
z1 = (n1 − n2)(1 + k)/2,

g(τ) = γ2
z1 +

2(1 + k)2

π

∞∑
ν=1

gν(n1 cos ντ1 − n2 cos ντ2),

〈g(τ)〉 = γ2
z1, g̃(τ) =

2(1 + k)2

π

∞∑
ν=1

gν

ν
(n1 sin ντ1 − n2 sin ντ2),

and so on. From (9) we get

d2ξ

dτ2
= − 1

N2

[
γ2

z1 −
1

N2

〈
g˜̃g〉

+
1

N4

〈
g
˜̃
gg̃ + 3γ2

z1g
˜̃̃̃
g

〉]
· ξ.
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Let us denote the bracketed term in the last expression by ν2
z . Then, ξ = B cos

(νz

N
τ + ψ

)
,

where B and ψ are arbitrary constants, and the frequency squared is

ν2
z =

n1 − n2

2
(1 + k) +

π2

N2

N1

48
+

π4

N4

(n1 − n2)N2

5 · 48(1 + k)
, (10)

where

N1 = (n2
1 + n2

2)(1 + 2k)2 + 2n1n2(1 + 4k + 4k1k2 − k2
1 − k2

2),

N2 = (n1 + n2)2
(

1 + 6k +
2
3
k2(19 + 16k + 4k2)

)
+ n1n2N3,

N3 = −32
3

k2(1 + 4k + k2) + 10k1k2(1 + 4k + k1k2),

and k1 = l1/a, k2 = l2/a. Detailed formula (10) illustrates the effectiveness of the method.
Substituting Gi into matrix equality (8), we ˇnd the solution of initial equation (3) in

the form

z =

[
1 − 1

N2
˜̃g +

1
N4

(˜̃
g˜̃g + 3γ2

z1

˜̃̃̃
g

)]
· ξ +

2
N3

˜̃̃
g

dξ

dϕ
.

Eventually, the asymptotics up to 1/N3 are written as

z = B cos
(νz

N
τ + ψ

)
(1 + S1 + γ2

z1S2) + B sin
(νz

N
τ + ψ

)
γz1S3, (11)

where

S1 =
2(1 + k)2

πN2

∞∑
ν=1

gν

ν2
(n1 cos ντ1 − n2 cos ντ2),

S2 =
8(1 + k)2

πN4

∞∑
ν=1

gν

ν4
(n1 cos ντ1 − n2 cos ντ2),

S3 =
4(1 + k)2

πN3

∞∑
ν=1

gν

ν3
(n1 sin ντ1 − n2 sin ντ2).

Now, we turn to Eq. (2), which has its own speciˇc features. In particular, γρ1 = 1 − γ2
z1,

G =
(

0 1
−1 + g 0

)
, G1 =

(
0 0
g̃ 0

)
, G2 =

( ˜̃g 0
0 −˜̃g

)
,

G3 =

⎛⎝ 0 −2˜̃̃g
g̃˜̃g − (1 + γ2

ρ1)
˜̃̃
g 0

⎞⎠ , G4 =

⎛⎜⎝ ˜̃
g˜̃g − (1 + 3γ2

ρ1)
˜̃̃̃
g 0

0 (3 + γ2
ρ1)

˜̃̃̃
g − 2g̃

˜̃̃
g −

˜̃
g˜̃g

⎞⎟⎠.

The equation for ξ has the form

d2ξ

dτ2
+

ν2
ρ

N2
ξ = 0,
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where

ξ = A cos
(νρ

N
τ + χ

)
,

and the frequency squared is

ν2
ρ = 1 − n1 − n2

2
(1 + k) +

π2

N2

N1

48
+

π4

N4

(2 − (1 + k)(n1 − n2))N2

5 · 48(1 + k)2
. (12)

In the last form, the solution is as follows:

ρ = A cos
(νρ

N
τ + χ

)
(1 − S1 − γ2

ρ1S2) − A sin
(νρ

N
τ + χ

)
γρ1S3. (13)

Averaging over fast oscillations leaves only the ˇrst terms in asymptotic expressions (11)
and (13). Consequently, A and B can be interpreted as the amplitudes of the main cosine
oscillations and χ and ψ Å as their initial phases. Additional terms show how is complicated
this particle motion.

There are no divergent hyperbolic functions in (11) and (13), which complies with the
strong focusing principle resulting in the stability of the motion as a whole.

The series that we have here can be expressed either in terms of the Bernoulli polynomi-
als Bi(x) or those that converge so fast that can be found numerically. For example, in the
ˇrst case,

∞∑
ν=1

gν

ν2
(n1 cos ντ1 − n2 cos ντ2) =

π3

3

[
n1

(
B3

( τ

2π

)
− B3

( τ

2π
− a

L

))
+

+n2

(
B3

(
τ

2π
− 2a + l1

L

)
− B3

(
τ

2π
− a + l1

L

))]
.

Here, x ∈ [0, 2π] for the arguments of the polynomials. If this condition is not fulˇlled,
one must go to another period. Thus, there is no doubt about the convergence of individual
terms in the asymptotics. To study this matter in general, we must again turn to (5), where
G · Z = Y (τ, Z).

The vector function Y (τ, Z) satisˇes the Caratheodory conditions for the existence of a
continuous solution, because it is τ -measurable at each ˇxed Z, and Z-continuous at each
ˇxed τ . For this function and its averaged value

〈Y (τ, ξ)〉 = 〈G〉 · ξ

the Lipschitz condition is fulˇlled. In addition, it can be shown that

lim
T→∞

1
T

T∫
0

Ỹ (τ, Z) dτ = 0.

Thus, all conditions of Theorem 1.1 from [6] are fulˇlled, which indicates the proximity
of solution z and ξ for the initial and averaged systems.
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3. PERTURBATION THEORY TECHNIQUE

Now, let us obtain expression (11) in a different way. We look for the solution of (3) in
the form

z = exp (iγzτ)ϕz(τ),

where ϕz(τ) is a periodic function. Since we are interested in motion only inside the stable
region called the ©necktieª of stability, we shall assume that Im γz = 0. A similar condition
should be set for γρ as well. This approach is close to the Whittaker method and the method
of stretched parameters for the Mathieu equation in [7].

For the function ϕz(τ) we get a new differential equation

d2ϕz

dτ2
+ 2iγz

dϕz

dτ
+

[
(1 + k)2n(τ)

N2
− γ2

z

]
ϕz = 0,

its solutions being deˇned as the asymptotic series

ϕz(τ) = ϕ0(τ) +
∞∑

i=1

ϕi(τ)
N i

, γz =
∞∑

i=1

γzi

N i
.

The small parameter is still 1/N . Setting coefˇcients at the same powers of the parameter
equal to zero, we arrive at the following chain of equations:

ϕ̈0 = 0, ϕ̈1 + 2iγz1ϕ̇0 = 0,

ϕ̈2 + 2i(γz1ϕ̇1 + γz2ϕ̇0) + ((1 + k)2n(τ) − γ2
z1)ϕ0 = 0,

ϕ̈3 + 2i(γz1ϕ̇2 + γz2ϕ̇1 + γz3ϕ̇0) + ((1 + k)2n(τ) − γ2
z1)ϕ1 − 2γz1γz2ϕ0 = 0, and so on.

According to [2, 7], the secular terms must be eliminated in the solutions for these equa-
tions. In the averaging theory, this corresponds to the existence of the limit on the right-hand
side in (6).

Then, from the ˇrst two equations, we get ϕ0 = b, ϕ1 = b1, where b, b1 are constants.
From the third expression the equality γ2

z1 = (n1 − n2)(1 + k)/2 follows. The solution itself
is written as

ϕ2 = b
2(1 + k)2

π

∞∑
ν=1

gν

ν2
(n1 cos ντ1 − n2 cos ντ2).

Then, we subsequently ˇnd γz2 = 0,

ϕ3 = −iγz1b
4(1 + k)2

π

∞∑
ν=1

gν

ν3
(n1 sin ντ1 − n2 sin ντ2) +

b1

b
ϕ2, γz3 =

π2N1

96γz1
,

ϕ4 = γ2
z1bN

2S2 − iγz1b1N
3S4 + bN4S3, γz4 = 0, and so on.

The square of the frequency νz = Nγz is deˇned as

ν2
z = γ2

z1 + 2γz1γz3/N
2.

Substituting γz1 and γz3, we get formula (10) up to 1/N2.
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The general solution can be built as

z = C exp (iγzτ)ϕz(τ) + C∗ exp (−iγzτ)ϕ∗
z(τ).

Redesignating the arbitrary constants as

C

(
b +

b1

N

)
=

(
B

2

)
exp (iψ),

we again arrive at expression (11).
Frequency (12) and asymptotic (13) can be derived in a similar manner, if the solution

of (2) is sought in the form ρ = exp (iγρτ)ϕρ(τ).
It turns out that the expansion parameter in (11) and (13) is n/N2. For example, for the

former DESY synchrotron it was equal to 0.15. The next-order correction will be about 2%.
Averaging the total velocity squared over period, we have

〈v2〉 = R2
0

(
ω0

1 + k

)2 (
1 + ν2

ρ

A2

R2
0

+ ν2
z

B2

R2
0

)
.

The angular frequency of revolution ω0 becomes 1 + k times smaller due to the effect of
the straight sections.

Summing up the last two sections, we can formulate the following theorem.

Theorem. The approximate solutions found for Eqs. (2) and (3) by the averaging method
and the perturbation method proposed in this section lead to the same result for all orders.

This can be demonstrated by the induction method.

CONCLUSION

First of all, it should be stressed that the above analysis was carried out for only one
period. However, the same conditions occur as the particle passed to another magnetic period
and, thus, generalization to the entire closed orbit is possible. Moreover, we were only
interested (from the point of view of the long-term use of radiation) in the stable motion of
a particle inside the envelope, where it makes thousands of turns. In treating the problem
of particle motion in an accelerator, we must point out that the Caratheodory conditions are
fulˇlled in this case as well, because the set of discontinuity gaps for the gradient is large but
denumerable.

Taking into account also [8], it seems probable to consider a more general equation

d2x

dτ2
+ ε2(a0 + f(τ))x = 0

in much the same way, where f(τ) is the periodic function and ε is the small parameter,
which applies to other physical problems.
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