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KOMIIBIOTEPHBIE TEXHOJIOTHU B ®U3UKE

APPLICATION OF THE FOURIER SERIES
FOR PARTICLE DYNAMICS SIMULATION
IN THE PERIODIC MAGNETIC FIELDS

O. E. Shishanin !

Moscow State Industrial University, Moscow

Given methods emerged in the solution of synchrotron radiation problem in cyclic accelerators [1].
It was necessary to find a set of differential equations for entire closed orbit instead of description for
separate sections. The best approach turned out to be an expansion of the magnetic field gradient or
components in the Fourier series. To solve the resulting differential equations with periodic coefficients,
the averaging theory had to be extended to the third and fourth orders of accuracy. In addition, an
original procedure was found within the perturbation theory, which yielded the same results.

Ipenct BreHHBIE METOABI UCTOIB3YIOTCS B PEIIEHUM 3 1 YU CHHXPOTPOHHOTO U3IydEHHs B IMKJIH-
yeckux yckoputensix [1]. Bmecro ommc HUs OTHeNbHBIX CEKLMH HeoOXomumo ObUIO H WTH cUCTeMy
mucgepeHnn TpHBIX yp BHEHMI IS LEJIOH 3 MKHYTOH opOuTHL JIydmnM IMOAXOAOM OK 3 JIOCh P 3710-
KEHUe Ip JUEHT WM KOMIIOHEHTOB M I'HUTHOTO 1oist B pan @ypoe. [ peleHus Noiny4eHHoro aud-
(hepeHIn TPHOTO yp BHEHUS C MEPHOAMYECKHMH KOI(M(UIUEHT MU TEOpHSl YCPEOHEHUS JOKH ObIT
JOCTUTHYTh TPEThEro WIIM YETBEPTOro MOpsAK TOYHOCTU. K TOMy Xe B p MK X TEOpPUH BO3MYIIEHHH
ObUT H HIeH WCXOMH S MPOLEayp , KOTOp s A J1 Te Xe pe3yiabT Thl.

PACS: 07.05.Tp

1. DERIVATION OF EQUATIONS

Without the loss of generality let us, at first, consider a specific example, which will be
supplemented by general methods. In our model, an electron rotates in a periodic magnetic
field H = br~—" (b is a constant, n is the field gradient) along a closed orbit of N elements,
where an element consists successively of a focusing arc section of length a and field gradi-
ent n1, a straight section of length /1, a defocusing magnet with gradient no, and again of a
free section of length [5. This is one of the versions of the 'O DO model, where O stands
for the field-free section.

If R is the radius of magnet curvature, then ¢ = mR/N, and the length of the entire
orbit is

S =27R+ Nl; + Nl = 27 Ry,
where Ry is the so-called mean radius. Let us assume that the ratio of free run lengths to the
magnet lengths k& = (I; + l2)/2a is a small parameter. Then, Ry = R(1 + k), and the period
of the system, taken in terms of the azimuth angle ¢, will be defined as 7' = 27 /N.
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The magnetic field gradient n(y) can be regarded as a staircase function with discontinu-
ities of the first kind. Expanding n(y) in a Fourier series, we obtain

_ 2
n(t) = M + p ;gy(nl COS VT1 — Mg COS UT), (1)
where 7 = N,
3 21
gl,:sinm/%/l/, L=2a+1; +lo, 7'1:7'—%&, TQZT—W%.

It would be more justified to go from a series to a partial sum in (1), because edge effects
may arise at the boundary of the magnet, and switching from n; to no is smoother. For
example, at ¢ = 0 we get, by the Dirichlet theorem, that n(7) = n1/2; at ¢ = (3a/2+11)/
L(27/N) (the middle of the second magnet) n(7) = —ng, and so on.

Finally, the Hill equations of small betatron oscillations in the linear approximation take
the form

d?p 1

T3+ xz( = 1+ E)*n(r)p =0, )
d? 1+ k)2
d_Tz + 7( ;2 ) n(t)z =0, (3)

where p = r — Ry.

As to the main orbital motion of the particle, it has some features resulting from switching
back and forth between rotation and rectilinear motion. Since only vertical oscillations affect
the radiation properties, we made some simplifications. We averaged the leading magnetic
field Hy over the entire period of the system and assumed that the mean radius of the electron
rotation is Rg.

Then, the angular velocity can be represented as

. wo p 30 zE pp
- -2 2P 22 _ PP 4
T 11k Ro+2R8+/n(<p)<R2 R2> } @

where wg = ceHy/E.

2. BOGOLIUBOV-MITROPOLSKY METHOD

Following the averaging theory [2], we represent Eq. (3) in the standard form

%:E.G.Z 5)
dr

where the components of the vector Z are z and (1/¢) dz/dr. Here, we have

_ 0 1 _ 2
G=( gty o)+ o) =+ RPn(r),

and € = 1/N is the small parameter.
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We can consider a more general matrix equation of the form
az
dr

For the function Y (7, Z) the operation of averaging is defined as

e-Y(r,2).

(Y(r,2)) :Tlim %/Y(T, Z)dr, 6)

and the integrating operator

7o) = [V - v (g dr
is introduced. The vector ¢ is found from the system

% —cvine),

and the first approximation is defined as
Z(r) = &(r) + Y (7. €).

Linear system (5) turns out to be the Caratheodory differential equation system [3,4].
Indeed, matrix G(7) is defined and is continuous at almost all 7, except those points making
up a set of measure zero. Moreover, it is seen to be limited. Thus, summation of the
matrix elements is possible on each section from the interval (0,2m). Then, by Theorem 3
from Ch. 1 in [4], the solution of (5) with any initial condition Z(7y) = Z, exists in the entire
interval (0, 27). Since here

Y7, 22) =Y (7, Z0)| < |G| - |22 = Z4],

i.e., the Lipschitz condition is fulfilled, this solution will be the only one. That is why an arbi-
trary choice of the initial point can be used in calculating the trajectory by the matrix method,
where the matrices of each structure are multiplied and a return to the initial point occurs.
Now, let us go back to the general method, which was written for the second approximation
in [5]. With the iteration procedure, where a new correction is successively added, any
approximation can be described.
If we take the first four orders, we obtain

4
Z(r)=¢+ > €'Y, @
i=1

where
- Y 1%
i=Y, Y, o, —/@dTm,

Cog ) e
9y oY, , /oY dYs
Vo= e ¥ a_ng<a_£Y1> — ) e

oY oy, . /oy Y, | OY dYs
Y4 - a_é.y}) _/8—£d7<8_£y2> _/8—£dT<8_§Y1> - a—ng<Y>
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According to [2], the error of this approximation is €5. Now, let us set Y (7,2) = G - Z.
Then, from (7) we find that

4
Z(r) = <1 +> EiGi> 3 (®)
i=1

de =~
E—€<G<1+;5Gi>>£. )

Differentiation with respect to the vector & can be illustrated by the following example:

where

5%(91151 + g12&2) 5%(91151 + g12&2)

0
“y - =G.
ZA N I M I
96, 92161 T 92282 pr 92161 T 92282
The matrices GG; then have the form
Gi =G, Go=GG -G (G),
G3 = GGy — G1(GG1) — Ga(G),
Gy = GG3 — G1{GGs) — G2(GGy) — G3(G).
Expressed in terms of the function g(7), they are
0 0 -3 0
Gl - ~ 3 G2 - g ~ 5
-9 0 0 g
0 2 99+ 3747 0
G3 = — ~ ) G4 = — — ~
9G+4g 0 0 ~295— 95— 740

Here, 72, = (n1 —na)(1 + k)/2,

201 + k)2 &
g(r) = 31 ( - ) z_:lg,,(nl COSVT] — Mg COSVTy),
—  2(1+k) Ny . .
(9(m)) =1, 9(7) o ; » (nysinvrm — ng sinv),

and so on. From (9) we get

d2¢ 1 1/~ 1 /= =
2o N2 l’731 - m<99> TN <999+ 37§1gg>] 53
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v
Let us denote the bracketed term in the last expression by 2. Then, £ = B cos (WZT + d)) ,
where B and v are arbitrary constants, and the frequency squared is
2 ny —n2 7T2 N1 7'('4 (nl—ng)NQ

- 14+k)+ Ly T
vz 7 U R T N s s R

(10)
where
Ny = (03 4+ n2)(1 +2k)% + 2n1no(1 + 4k + 4ki ko — k3 — k2),
2
Ny = (n1 4 ng)? (1 + 6k + §k2(19 + 16k + 4k2)) + n1ng N3,
32 5 9
N3 = —?k (1 +4k + k ) + 10k1k}2(1 + 4k + klkg),
and k1 =1y /a, ks = Iz /a. Detailed formula (10) illustrates the effectiveness of the method.

Substituting G; into matrix equality (8), we find the solution of initial equation (3) in
the form

1~ 1 (= = 2 Zd¢
z= [1—m9+m<99+37§19> '€+m9%-
Eventually, the asymptotics up to 1/N? are written as
Vy . Vs
z = Bcos (NT + 1/}) (1+ 81 +72,S2) + Bsin (NT + 1/1) 72153, (11)

where

Sl €

(n1 cosvT — N2 COSVT?),

2(1 + k)2 &
Si= = X

8(1+k)? <= g

Sy = ——NT Eﬂ F(nl COSVT] — N2 COSVTR),
A1+k)2 g, :

Sg = - E 3 (nqsinvr — ng sin vrs).

Il
-

v

Now, we turn to Eq. (2), which has its own specific features. In particular, y,1 =1 — 731,

B 0o 1 (00 (3 o
(0 b a=(3) o=(3 %)

o= = 9 \%
G| O _ % Gy = | 99— 437509 R

99— +)g 0 0 (34123 — 299 — 99
The equation for ¢ has the form

azre vl
a2 Tt =0
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where
& = Acos (%T—I—X) ,

and the frequency squared is

— 2N 7 (2 — (1 + k)(m — ng))NQ
2 MRy D T . 12
G B+ s + e 5-48(1 + k)2 (12)
In the last form, the solution is as follows:
v e
p = Acos (Npr + X) (1-8; — 73152) — Asin (NI)T + X) Vp153- (13)

Averaging over fast oscillations leaves only the first terms in asymptotic expressions (11)
and (13). Consequently, A and B can be interpreted as the amplitudes of the main cosine
oscillations and x and i — as their initial phases. Additional terms show how is complicated
this particle motion.

There are no divergent hyperbolic functions in (11) and (13), which complies with the
strong focusing principle resulting in the stability of the motion as a whole.

The series that we have here can be expressed either in terms of the Bernoulli polynomi-
als B;(x) or those that converge so fast that can be found numerically. For example, in the
first case,

00 3
¥ s T T a
Z g—(m COSVT] — N2 COS UTy) = ) {nl (33 (%) — B3 (% - Z)) +

v=1
T 2a + 11 T a—+ 1
oo (1 (- 1) - (-4 )) |

Here, x € [0, 27] for the arguments of the polynomials. If this condition is not fulfilled,
one must go to another period. Thus, there is no doubt about the convergence of individual
terms in the asymptotics. To study this matter in general, we must again turn to (5), where
G-Z=Y(r,2).

The vector function Y (7, Z) satisfies the Caratheodory conditions for the existence of a
continuous solution, because it is 7-measurable at each fixed Z, and Z-continuous at each
fixed 7. For this function and its averaged value

Y(7,8)) =(G)-¢

the Lipschitz condition is fulfilled. In addition, it can be shown that

<

T

N Y

TIEI;O?/Y(T,Z)dT—O.
0

Thus, all conditions of Theorem 1.1 from [6] are fulfilled, which indicates the proximity
of solution z and ¢ for the initial and averaged systems.
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3. PERTURBATION THEORY TECHNIQUE

Now, let us obtain expression (11) in a different way. We look for the solution of (3) in
the form

z = exp (i7, 7). (1),

where ¢, (7) is a periodic function. Since we are interested in motion only inside the stable
region called the “necktie” of stability, we shall assume that Im~, = 0. A similar condition
should be set for «y, as well. This approach is close to the Whittaker method and the method
of stretched parameters for the Mathieu equation in [7].

For the function ¢, (7) we get a new differential equation

Po. . dp.  [(L+E)>Pn(r)
e 2+ [T —vz} 0, =0,

its solutions being defined as the asymptotic series

o ¢il(7) o~ Vi
SURLORDYE I o

i=1

The small parameter is still 1/N. Setting coefficients at the same powers of the parameter
equal to zero, we arrive at the following chain of equations:

41.0'0 - 0) ¢1 + 2i’Yz1$b0 - 07
B2+ 20101 + Ya2¢0) + (14 k)*n(T) —72)po = 0,
@3 4 2i(Y2192 + V2201 + V23%0) + (1 + k)*n(7) — 72191 — 272172200 = 0, and so on.

According to [2,7], the secular terms must be eliminated in the solutions for these equa-
tions. In the averaging theory, this corresponds to the existence of the limit on the right-hand
side in (6).

Then, from the first two equations, we get o = b, o1 = b1, where b, by are constants.
From the third expression the equality 72, = (ny — n2)(1 + k)/2 follows. The solution itself
is written as

2 (n1 cosvm — ng CoSVT).

v=1

204 k)2 g
o =bL 3

Then, we subsequently find v,2 = 0,

M i g_,,(nl sinvr — ngsinvr) + b—lgag Va3 = Ui
=3 b7 967

P4 = ’Y?leQSQ — i’yzlblN354 + bZ\74537 Y.4 =0, and so on.

Y3 = _i'Yzlb

The square of the frequency v, = N+, is defined as
V2 =2 + 2p17s3/N

Substituting 7,1 and 7.3, we get formula (10) up to 1/N2.
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The general solution can be built as
z = Cexp (i17.7):(1) + C* exp (—iv,T)pi (7).

Redesignating the arbitrary constants as

o (v 3) = (5)ewiin)

we again arrive at expression (11).

Frequency (12) and asymptotic (13) can be derived in a similar manner, if the solution
of (2) is sought in the form p = exp (i7,7)p, (7).

It turns out that the expansion parameter in (11) and (13) is n/N2. For example, for the
former DESY synchrotron it was equal to 0.15. The next-order correction will be about 2%.

Averaging the total velocity squared over period, we have

2 2 2
wo A 2B

(v?) = R2 (—) (1+y —+yz—>.
O\1+k " R2 R?

The angular frequency of revolution wy becomes 1 + k times smaller due to the effect of
the straight sections.
Summing up the last two sections, we can formulate the following theorem.

Theorem. The approximate solutions found for Egs. (2) and (3) by the averaging method
and the perturbation method proposed in this section lead to the same result for all orders.

This can be demonstrated by the induction method.

CONCLUSION

First of all, it should be stressed that the above analysis was carried out for only one
period. However, the same conditions occur as the particle passed to another magnetic period
and, thus, generalization to the entire closed orbit is possible. Moreover, we were only
interested (from the point of view of the long-term use of radiation) in the stable motion of
a particle inside the envelope, where it makes thousands of turns. In treating the problem
of particle motion in an accelerator, we must point out that the Caratheodory conditions are
fulfilled in this case as well, because the set of discontinuity gaps for the gradient is large but
denumerable.

Taking into account also [8], it seems probable to consider a more general equation

d*x

—5 + € (ag+ f(7)z =0

dr
in much the same way, where f(7) is the periodic function and ¢ is the small parameter,
which applies to other physical problems.
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