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ON THE THEORY OF WAVE PACKETS
D.V. Naumov1

Joint Institute for Nuclear Research, Dubna

In this paper we discuss some aspects of the theory of wave packets. We consider a popular non-
covariant Gaussian model used in various applications and show that it predicts too slow a longitudinal
dispersion rate for relativistic particles. We revise this approach by considering a covariant model of
Gaussian wave packets, and examine our results by inspecting a wave packet of an arbitrary form.
A general formula for the time dependence of the dispersion of a wave packet of an arbitrary form
is found. Finally, we give a transparent interpretation of the disappearance of the wave function over
time due to the dispersion Å a feature often considered undesirable, but which is unavoidable for wave
packets. We ˇnd, starting with simple examples, proceeding with their generalizations and ˇnally by
considering the continuity equation, that the integral over time of both the 	ux and probability densities
is asymptotically proportional to the factor 1/|x|2 in the rest frame of the wave packet, just as in the
case of an ensemble of classical particles.

‚ ¤ ´´μ° · ¡μÉ¥ ³Ò μ¡¸Ê¦¤ ¥³ ´¥±μÉμ·Ò¥  ¸¶¥±ÉÒ É¥μ·¨¨ ¢μ²´μ¢ÒÌ ¶ ±¥Éμ¢. ŒÒ · ¸¸³ -
É·¨¢ ¥³ ¶μ¶Ê²Ö·´ÊÕ ´¥±μ¢ ·¨ ´É´ÊÕ £ Ê¸¸μ¢Ê ³μ¤¥²Ó, ¨¸¶μ²Ó§Ê¥³ÊÕ ¢ · §²¨Î´ÒÌ ¶·¨²μ¦¥´¨ÖÌ,
¨ ¶μ± §Ò¢ ¥³, ÎÉμ μ´  ¶·¥¤¸± §Ò¢ ¥É ¸²¨Ï±μ³ ³¥¤²¥´´ÊÕ ¶·μ¤μ²Ó´ÊÕ ¸±μ·μ¸ÉÓ · ¸¶²Ò¢ ´¨Ö ¤²Ö
·¥²ÖÉ¨¢¨¸É¸±¨Ì Î ¸É¨Í. ŒÒ ÊÉμÎ´Ö¥³ ÔÉμ ¶·¨¡²¨¦¥´¨¥ · ¸¸³μÉ·¥´¨¥³ ±μ¢ ·¨ ´É´μ° ³μ¤¥²¨ £ Ê¸-
¸μ¢ÒÌ ¢μ²´μ¢ÒÌ ¶ ±¥Éμ¢,   É ±¦¥ ¨¸¸²¥¤Ê¥³ ÔÉμÉ ¢μ¶·μ¸ ¤²Ö ¢μ²´μ¢ÒÌ ¶ ±¥Éμ¢ ¶·μ¨§¢μ²Ó´μ°
Ëμ·³Ò. �μ²ÊÎ¥´  μ¡Ð Ö Ëμ·³Ê²  § ¢¨¸¨³μ¸É¨ μÉ ¢·¥³¥´¨ ¤¨¸¶¥·¸¨¨ ¢μ²´μ¢μ£μ ¶ ±¥É  ¶·μ¨§¢μ²Ó-
´μ° Ëμ·³Ò. � ±μ´¥Í, ³Ò ¤ ¥³ ¶·μ§· Î´ÊÕ ¨´É¥·¶·¥É Í¨Õ Ê³¥´ÓÏ¥´¨Ö ³μ¤Ê²Ö ¢μ²´μ¢μ° ËÊ´±Í¨¨
¸μ ¢·¥³¥´¥³ ¨§-§  · ¸¶²Ò¢ ´¨Ö ¢μ²´μ¢μ£μ ¶ ±¥É  (´¥¶·¥³¥´´μ¥ ¸¢μ°¸É¢μ ¢μ²´μ¢ÒÌ ¶ ±¥Éμ¢, Î ¸Éμ
· ¸¸³ É·¨¢ ¥³μ¥ ± ± ´¥¦¥² É¥²Ó´μ¥ ¢ · §´ÒÌ ¶·¨²μ¦¥´¨ÖÌ). ŒÒ ´ Ìμ¤¨³, ´ Î¨´ Ö ¸ ¶·μ¸ÉÒÌ
¶·¨³¥·μ¢, § É¥³ ¶¥·¥Ìμ¤Ö ± ´ ¨¡μ²¥¥ μ¡Ð¥° Ëμ·³¥ ¢μ²´μ¢μ£μ ¶ ±¥É  ¨, ´ ±μ´¥Í, ¨¸¸²¥¤ÊÖ Ê· ¢´¥-
´¨¥ ´¥¶·¥·Ò¢´μ¸É¨, ÎÉμ ¨´É¥£· ² ¶μ ¢·¥³¥´¨ μÉ ¶²μÉ´μ¸É¥° ¢¥·μÖÉ´μ¸É¨ ¨ Éμ±   ¸¨³¶ÉμÉ¨Î¥¸±¨
¸É·¥³¨É¸Ö ± Ë ±Éμ·Ê 1/|x|2 ¢ ¸¨¸É¥³¥ ¶μ±μÖ ¢μ²´μ¢μ£μ ¶ ±¥É , ¢ ÉμÎ´μ¸É¨ ± ± ¤²Ö ¸²ÊÎ Ö  ´¸ ³¡²Ö
±² ¸¸¨Î¥¸±¨Ì Î ¸É¨Í.

PACS: 03.65.-w

INTRODUCTION

A classical or quantum object composed of multiple waves with trajectory characteristics
of a solid body is often called a wave packet. A prime example of a quantum wave packet
is the wave function describing the free propagation of a particle. Waves in 	uids and gases
are examples of classical wave packets in our everyday life.

Wave packets are known to spread with the passage of time. In other words, the spatial
size of the wave packet grows over time, while its amplitude vanishes. This well-known
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unavoidable feature of wave packets is often considered as their ®disadvantage¯ in various
applications.

In particular, while it is impossible to build a consistent scattering theory without wave
packets [1, 2] it is not rare to meet an argument that their vanishing with time makes them
not quite adequate objects for initial and ˇnal states. Indeed, the initial (ˇnal) state is deˇned
at inˇnitely far past (future) moment in time at which any wave packet should vanish, thus
making their use in S theory sometimes arguable.

However, as we show in this paper this problem is not critical for the S-matrix formalism,
as the spreading of wave packets has a very clear interpretation. The dispersion leads precisely
to a 1/|x|2 suppression of the time-integrated probability to observe the particle, just as one
would expect for an ensemble of classical ®particles¯, thus leading to transparent normalization
factors of the initial and ˇnal states.

We will ˇrst introduce some deˇnitions and notations used within this paper, and then
outline its layout. Throughout the paper we will use the Natural units where � = c = 1. For
deˇniteness we will examine a quantum wave packet, while our results will also be valid for
classical wave packets because we do not consider particle creation or annihilation in this
paper. The wave packet for a spinless particle with mass m has the form

|wave packet〉 =
∫

dkφ(k)
(2π)32Ek

|k〉, (1)

where |k〉 is the Fock state with deˇnite 3-momentum k and energy Ek =
√

k2 + m2, and
φ(k) is a Lorentz-invariant function assumed to be narrow around some momentum p which
we will deˇne later on. As we will show in Sec. 2 a real-valued φ(k) corresponds to the wave
packet with mean three-dimensional position:

〈x〉 = 0 at time t = 0.

The action of the translation operator eiP̂ x0 (where P̂ is the operator of 4-momentum, and
x0 = (t0,x0) Å the four-dimensional displacement vector) onto the wave-packet state in (1):

eiP̂x0

∫
dkφ(k)

(2π)32Ek
|k〉 =

∫
dk eikx0φ(k)
(2π)32Ek

|k〉, (2)

translates the wave-packet state in space and time. Therefore, the wave packet in (1) with

φ(k) = eikx0 |φ(k)| (3)

has the mean position 〈x〉 = x0 at t = t0. Since it essentially gives us no new information,
in this paper we will consider the case where x0 = 0 at t0 = 0, assuming a real-valued φ(k)
function.

In coordinate space the wave packet is characterized by the Lorentz-invariant wave func-
tion, which can be obtained by projecting the wave-packet state (1) onto the 〈0|Ψ̂(x) state,
where Ψ̂(x) is the quantum ˇeld operator for the (pseudo)scalar particle, as follows:

ψ(x) = 〈0|Ψ̂(x)|wave packet〉 =
∫

dkφ(k)
(2π)32Ek

e−ikx. (4)
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It is apparent that ψ(x) satisˇes the KleinÄGordon equation. If ψ(0,x) is known, then φ(k)
could be found as follows:

φ(k)
2Ek

=
∫

dxψ(0,x) e−ikx. (5)

The 4-vector of the 	ux density jμ(x) = (ρ(x), j(x)) is deˇned in the usual way for the
KleinÄGordon equation:

jμ(x) = i (ψ∗(x)∂μψ(x) − ψ(x)∂μψ∗(x)) . (6)

The probability density, which is not relativistic invariant, can be normalized in a relativisti-
cally invariant way as follows:

∫
dx ρ(t,x) =

∫
dk |φ(k)|2

(2π)32Ek
= 1 (7)

which corresponds to one particle within the Universe. The spatial integral over the 	ux
density j(t,x) is equal to the mean velocity of the wave packet, as can be seen from the
following: ∫

dx j(t,x) =
∫

dk |φ(k)|2

(2π)32Ek
vk = 〈v〉. (8)

By deˇnition, the mean energy 〈E〉 and mean momentum 〈P〉 of the wave-packet state are
obtained from

〈Pμ〉 =
〈wave packet|P̂μ|wave packet〉
〈wave packet|wave packet〉 , (9)

where P̂μ is the μth component of the 4-momentum operator acting on the Fock state as
P̂μ|k〉 = kμ|k〉. Therefore,

〈E〉 =
∫

dk|φ(k)|2
(2π)32Ek

Ek, (10)

〈P〉 =
∫

dk|φ(k)|2
(2π)32Ek

k. (11)

Equations (1), (7), (8), (10), (11) suggest that |φ(k)|2/2Ek is the probability density to have
3-momentum k for the state in (1). The paper is organized as follows. We begin with a
well-known example of a noncovariant Gaussian wave packet in Subsec. 1.1 to illustrate the
main features of a dispersive wave packet. We observe that the wave packet disperses in both
the longitudinal and transverse directions relative to the mean velocity vector. However, it
is shown that the speed of the longitudinal dispersion predicted by the noncovariant model
is too slow after examining the covariant Gaussian model of the wave packet given in
Subsec. 1.2. For the considered examples we will ˇnd that the time-integrated 	ux density
asymptotically follows 1/|x|2. In Sec. 2 we generalize our calculations for wave packets of
an arbitrary form restricted by (3). We will ˇnd that, on average, a wave packet follows
the classical trajectory. We will also produce a general formula for the time dependence
of the dispersion of the wave packet. After inspecting this formula we realize that the
prediction of the noncovariant Gaussian model for the longitudinal dispersion is indeed not
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correct for ultrarelativistic particles, while the covariant model agrees with the prediction
using more general considerations. In Subsec. 2.2 we examine the asymptotic natures of the
time-integrated 	ux and probability densities, and conˇrm that a wave packet of an arbitrary
form will follow a 1/|x|2 trend. In Sec. 3 we revisit the 1/|x|2 tendencies from another point
of view Å by considering possible conclusions from the continuity equation, which holds
true not only for the KleinÄGordon equation, from which we performed all of our calculations
in this paper, but also for other equations like those of Schroedinger and Dirac. Finally, in
Sec. 4 we discuss the main results of this paper and draw conclusions.

1. GAUSSIAN WAVE PACKET

1.1. Noncovariant Gaussian Wave Packet. Let us consider, as a useful illustration, a
well-known example of a noncovariant Gaussian wave packet with φ(k) = ϕG(k) assumed
to be

ϕG(k) =
√

2Ep

(
2π

σ2
p

)3/4

exp

[
− (k − p)2

4σ2
p

]
, (12)

where σp is the constant Gaussian width in the momentum distribution of the wave packet.
The spaceÄtime wave function ψ(x) = ψG(x) could be obtained from (4) by assuming small
enough σp to expand Ek in the exponent around k = p:

Ek = Ep + vp(k − p) +
m2

2E3
p

(k − p)2 +
(p × k)2

2E3
p

+ . . . , (13)

where v = p/Ep, and by replacing Ek in the denominator of φ(k)/2Ek with Ep. Then, the
remaining Gaussian integrals in (4) yield

ψG(x) =

exp

[
−ipx− (xL − vt)2

4σ2
x(1 + it/τL)

− x2
T

4σ2
x(1 + it/τT)

]

(2π)3/4
√

2Epσ
3/2
x

√
(1 + it/τL)(1 + it/τT)

, (14)

where p = (Ep,p), σ2
x = 1/4σ2

p and

τL = γ3
pτ, τT = γpτ, τ = 2σ2

xm, γp =
Ep

m
. (15)

xL and xT are components of x parallel and perpendicular, respectively, to the average (and
most probable) velocity vector v.

As one might observe, ψG(x) describes a wave packet which spreads over time. To
present it in a more transparent fashion let us examine |ψG(x)|:

|ψG(t,x)| =

exp

[
− (xL − vt)2

4σ2
x(1 + t2/τ2

L)
− x2

T

4σ2
x(1 + t2/τ2

T)

]

(2π)3/4
√

2Epσ
3/2
x (1 + t2/τ2

L)1/4 √
1 + t2/τ2

T

. (16)
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Considering this example, a noncovariant Gaussian wave packet is described at t = 0 by

ψG(0,x) =
1

(2π)3/4
√

2Epσ
3/2
x

exp
[
ipx − x2

4σ2
x

]
(17)

and at later times spreads in both the longitudinal and transverse directions. The squares of
the longitudinal (σ2

xL(t)) and transverse (σ2
xT(t)) dispersions read

σ2
xL(t) = σ2

x(1 + t2/τ2
L), (18)

σ2
xT(t) = σ2

x(1 + t2/τ2
T), (19)

where τL and τT, given by (15), are related to each other by τL = γ2
pτT. In what follows we

will refer to τL and τT as the longitudinal and transverse dispersion times, respectively. τ is
the dispersion in the rest frame of the wave packet when, obviously, τL = τT = τ .

The noncovariant model suggests that the wave packet is expected to disperse more
slowly in the longitudinal direction by a factor of γ2

p as compared to the transverse direction.
There are two dispersion regimes: transverse dispersion (t � τT) and longitudinal dispersion
(t � τL). In the regime of complete dispersion one obtains

σxL(t) = σx
t

τ

1
γ3
p

, t � τL, (20)

σxT(t) = σx
t

τ

1
γp

, t � τT. (21)

It should come as no surprise, however, that the noncovariant wave packet in (12) might
fail in predicting relativistic effects. Indeed, as we will demonstrate in Subsec. 1.2, a relativis-
tically covariant version of the Gaussian wave packet predicts an alternate dependence on the
longitudinal dispersion. Therefore, we will postpone a qualitative and quantitative discussion
of dispersion effects until Subsec. 1.2.

Let us now see how these dispersions lead to a 1/|x|2 suppression of the time-integrated
	ux density. For simplicity we will perform the calculations in the rest frame of the wave
packet. The 	ux density reads

jG(t,x) = −i (ψ∗
G(x, t)∇ψG(x, t) − ψG(x, t)∇ψ∗

G(x, t)) =

=
x t/τ exp

[
− x2

2σ2
x(1 + t2/τ2)

]
(2π)3/22mσ5

x (1 + t2/τ2)5/2
. (22)

An explicit calculation of the time integral
∞∫
0

dt jG(t,x) allows us to observe that, in the

regime |x|2 � σ2
x, one has the following transparent formula:

ΦG(x) =

∞∫
0

dt jG(t,x) =
x

4π|x|3 . (23)

The corrections to (23) are suppressed by e−x2/2σ2
x .
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1.2. Covariant Gaussian Wave Packet. Let us note that relativistically covariant wave
packet does not neccessarily imply near speed of light velocity of the latter. A relativistically
covariant Gaussian wave packet was considered in [3, 4]. The proposed φ(k) = φRG(k)
function is explicitly Lorentz-invariant and reads as follows:

φRG(k) = NRG exp
[
(p − k)2

4σ2
p

]
. (24)

While an exact formula for the corresponding spaceÄtime wave function ψ(x) = ψRG(x) was
obtained in [3,4], we proceed here in an approximate fashion in order to more quickly attain
the main results. Let us again exploit the smallness of σ2

p and use (13) to produce

φRG(k) =
√

2m

(
2π

σ2
p

)3/4

exp

[
− (p − kL)2

4σ2
pL

− k2
T

4σ2
pT

]
, (25)

where
σ2

pL = σ2
pγ2

p, σ2
pT = σ2

p (26)

and the relativistically invariant normalization constant was obtained with the help of (7). The
coordinate wave function ψRG(x) can be obtained in the same way as we proceeded for (14):

ψRG(x) =

exp

[
−ipx − (xL − vt)2

4σ2
xL(1 + it/τp)

− x2
T

4σ2
xT(1 + it/τp)

]

(2π)3/4
√

2mσ3
x(1 + it/τp)3/2

, (27)

where

σ2
xL =

1
4σ2

pL

=
σ2

x

γ2
p

, σ2
xT =

1
4σ2

pT

= σ2
x, τp = τγp (28)

with σ2
x = 1/4σ2

p and τ = 2mσ2
x, just as in the case of the noncovariant wave packet.

Similarly to Subsec. 1.1 one can obtain the longitudinal and transverse dispersions as functions
of time

σ2
xL(t) = σ2

xL(1 + t2/τ2
p), (29)

σ2
xT(t) = σ2

xT(1 + t2/τ2
p), (30)

where σ2
xL and σ2

xT are given by (28). Now in the regime of complete dispersion (t � τ )
one has

σxL(t) = σxL(0)
t

τp
, (31)

σxT(t) = σxT(0)
t

τp
, (32)

σxL(t) =
1
γp

σxT(t). (33)

Comparing (31)Ä(33) to (20), (21) one might observe a problem with the noncovariant model's
ϕG(k) (see (12)), which wrongly predicts, by the factor 1/γ2

p, too slow a dispersion in the
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longitudinal direction as compared to the covariant model φRG(k) (see (24)) where both the
longitudinal and transverse dispersions have the same rate. However, since the size of the
longitudinal spatial width is smaller than the corresponding transverse width by a factor of
γp, the absolute value of the former always remains smaller.

In order to give some quantitative estimates of both the longitudinal and transverse dis-
persions, let us consider three examples: an electron, a neutrino with a mass of 0.1 eV, and
a ®classical¯ particle with a mass of 1 g. Let us assume that initially these ®particles¯ had
in their rest frames σx = 1 μm and see how long it will take to double the corresponding
longitudinal and transverse sizes. We will consider two cases as an example: the particle is at
rest, or has a full energy equal to 1 GeV. We summarize τL and τT in Table for noncovariant
and τ for covariant Gaussian models (see (20), (21) and (31)Ä(33)).

τL and τT for particles with masses 0.5 MeV, 0.1 eV and a ®classical¯ particle with a mass of 1 g. It
is assumed that the particles are either at rest or have a total energy of 1 GeV. Estimates are given
for both the noncovariant and covariant Gaussian models

Mass γp
Noncovariant Covariant

τL τT τp

0.5 · 106 eV 1 5 · 10−8 s 5 · 10−8 s 5 · 10−8 s
0.5 · 106 eV 2 · 103 4 · 102 s 10−4 s 10−4 s

0.1 eV 1 10−14 s 10−14 s 10−14 s
0.1 eV 1010 1016 s 10−4 s 10−4 s

1 g 1 3 · 1011 y 3 · 1011 y 3 · 1011 y

As one can see from this table, the coordinate wave functions ψ(x) of particles with
microscopic masses quickly disperse in the rest frames of the particles. However, the pre-
dictions of the noncovariant and covariant Gaussian models are sharply different for the
longitudinal dispersion rates. Essentially, the noncovariant model produces too slow a longi-
tudinal dispersion (by a factor γ2

p) compared to the covariant model. This makes a dramatic
difference. For example, a particle with neutrino mass on the order of 0.1 eV does not dis-
perse longitudinally during the lifetime of the Universe according to the noncovariant model,
while it disperses quite quickly (during 10−4 s) according to the covariant model.

Let us note also that the coordinate wave functions ψ(x) of a ®particle¯ with a mass on
the order of 1 g, initially bound within a space of 1 μm, disperse within times signiˇcantly
exceeding the lifetime of the Universe, thus bridging quantum and classical physics.

It is worth noting that the relativistic wave-packet model (24) also displays similar behavior
at x2 � σ2

x as in (23). As we will show in the next section this is a general property of wave
packets of an arbitrary form.

2. WAVE PACKET OF AN ARBITRARY FORM

In this section it will be beneˇcial to use the following representation of jμ(x), which can
be obtained with the help of (4):

ρ(x) =
∫

dk dqΠ(k,q) e−i(k−q)x, (34)

j(x) =
∫

dk dqJ(k,q) e−i(k−q)x, (35)
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where

Π(k,q) =
φ(k)φ(q)

(2π)62Ek2Eq
[Ek + Eq] , (36)

J(k,q) =
φ(k)φ(q)

(2π)62Ek2Eq
[k + q] . (37)

2.1. Trajectory and Dispersion of the Wave Packet. It is well known that the mean
coordinate of the wave packet follows the classical trajectory. Indeed, explicit calculation for
an arbitrary form of real-valued φ(k) yields

〈x〉 =
∫

dx ρ(t,x)x =
∫

dkφ2(k)
(2π)32Ek

k
Ek

t = 〈v〉t, (38)

where 〈v〉 is given by (8).
Let us now examine the time dependence of the coordinate dispersion. By deˇnition, the

square of the spatial dispersion reads

σ2
x(t) = 〈x2〉 − 〈x〉2. (39)

Performing calculations for 〈x2〉 yields

〈x2〉 =
∫

dxx2ρ(t,x) = t2
∫

dkφ2(k)
(2π)32Ek

v2
k −

∫
dkφ(k)

(2π)32Ek

∂2φ(k)
∂k2

+

+
∫

dk
(2π)3

[
φ2(k)

(
m2

4E5
k

− v2
k

2E3
k

)
+

vk

4E2
k

∂φ2(k)
∂k

]
. (40)

Taking into account the integral∫
dk

(2π)3
vk

4E2
k

∂φ2(k)
∂k

= −
∫

dkφ2(k)
(2π)3

∂

∂k
vk

4E2
k

= −
∫

dkφ2(k)
(2π)3

(
m2

4E5
k

− v2
k

2E3
k

)
, (41)

the last line of (40) is precisely cancelled. The integral

−
∫

dkφ(k)
(2π)32Ek

∂2φ(k)
∂k2

in (40) does not depend on spaceÄtime coordinates. It has the dimensions of the 3-coordinate
squared and it is not invariant under the Lorentz transformations. Let us denote it by

σ2
x = −

∫
dkφ(k)

(2π)32Ek

∂2φ(k)
∂k2

. (42)

Therefore,
〈x2〉 = σ2

x + 〈v2〉t2 (43)

where

〈v2〉 =
∫

dk |φ(k)|2
(2π)32Ek

v2
k. (44)
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Thus, the square of the dispersion of the coordinates reads

σ2
x(t) = σ2

x +
(
〈v2〉 − 〈v〉2

)
t2

(45)
= σ2

x + σ2
vt2,

where σ2
v = 〈v2〉 − 〈v〉2 is the velocity dispersion. The general result (45) being one of

the main results of this paper is not however new. It was already obtained in [5] where the
derivation was unfortunately somewhat inconsistent as the authors asummed |ψ(t,x)|2 to be a
probability density function, while ρ(t,x) deˇned in (6) instead should be used for the scalar
relativistic particle.

We will now examine how the coordinate dispersion depends on relativistic effects, keep-
ing in mind the discussions in Subsecs. 1.1 and 1.2 concerning different predictions for the
longitudinal dispersion of the noncovariant and covariant Gaussian models of wave packets.

First, we rewrite σ2
v as follows:

σ2
v = 〈v2〉 − 〈v〉2 = 〈v2

T〉 + 〈v2
L〉 − 〈v〉2

(46)
= 〈v2

T〉 + 〈(vL − 〈v〉)2〉,

where 〈v2
T〉 and 〈v2

L〉 are, respectively, the means of the squares of the longitudinal and
transverse projections of wave-packet velocities relative to the mean velocity vector. Rewriting
〈v2

T〉 and 〈(vL − 〈v〉)2〉 using the variables in the rest frame of the wave packet

Ek = γ〈v〉(E∗
k + 〈v〉k∗

L), (47)

kL = γ〈v〉(k∗
L + 〈v〉Ek∗), kT = k∗

T, (48)

vkL =
v∗
kL + 〈v〉

1 + v∗
kL〈v〉

, γ〈v〉 =
1√

1 − 〈v〉2
(49)

as follows:

〈v2
T〉 =

∫
dk |φ(k)|2
(2π)32Ek

v2
kT =

1
γ2
〈v〉

∫
dk∗ |φ(k∗)|2
(2π)32Ek∗

v∗2
kT

(1 + 〈v〉v∗
kL)2

(50)

and

〈(vL − 〈v〉)2〉 =
∫

dk |φ(k)|2
(2π)32Ek

(vkL − 〈v〉)2 =
1

γ4
〈v〉

∫
dk∗ |φ(k∗)|2
(2π)32Ek∗

v∗2
kL

(1 + 〈v〉v∗
kL)2

. (51)

Comparing (50) to (51), one can observe that for narrow wave packets one gets, to the ˇrst
order:

〈v2
T〉 =

1
γ2
〈v〉

〈v∗2
T 〉, (52)

〈(vL − 〈v〉)2〉 =
1

γ4
〈v〉

〈v∗2
L 〉. (53)
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Therefore, in the regime of complete dispersion, keeping in mind that in the rest frame of the
wave packet 〈v∗2

L 〉 = 〈v∗2
T 〉/2 = (1/3)〈v∗2〉 and using (45), one obtains

σ2
xL(t) =

1
3γ4

〈v〉
〈v∗2〉t2, (54)

σ2
xT(t) =

2
3γ2

〈v〉
〈v∗2〉t2, (55)

σ2
xL(t) =

1
2γ2

〈v〉
σ2

xT(t) (56)

in agreement with calculations performed for the covariant model (see (31)Ä(33)). The
seemingly extra factor of 1/2 in (56) is due to the cumulative nature of the deˇnition in (39),
which adds together all projections of the dispersion. Apparently, in the rest frame of the
wave packet

σ2
x(t) = σ2

xL(t) + σ2
xT(t) = 〈v∗2〉t2.

Let us examine the following question: if the Gaussian wave packet can be shown to
exhibit an asymptotic behavior of Φ(x) = x/|x|3 (see (23)), does this also hold true in the
general case? As we will see in Subsec. 2.2 this is indeed true. Moreover, keeping in mind
that probability ρ(x) and 	ux j(x) densities are closely related to each other, it implies that

a similar asymptotic behavior should also apply to the integral
∞∫
0

dtρ(t,x). Indeed, for the

wave function with deˇnite 4-momentum (ψ(x) = N e−ipx), the relation is obvious:

ρ(x) = 2Ep|N |2, j(x) = 2p|N |2, j(x) = vρ(x). (57)

Apparently, for narrow wave packets, a relation similar to (57) should be valid as well.
In Subsec. 2.3 we will explicitly calculate the asymptotic behavior of the time-integrated
probability densities.

2.2. Asymptotic Behavior of the Time-Integrated Flux Density. Let us compute here

Φ(x) ≡
∞∫
0

dt j(t,x). (58)

In order to integrate over the time in (58), let us use the following formula:
∞∫
0

dt e±iαt = π

(
δ(α) ± i

π
P 1

α

)
, (59)

where P represents the Cauchy principal value of the integral.
Therefore,

Φ(x) = Φ1(x) + Φ2(x), (60)

where

Φ1(x)=π

∫
dk dqJ(k,q) δ(Ek − Eq) cos [(k−q)x] , (61)

Φ2(x)=
∫

dk dqJ(k,q)P
(

1
Ek − Eq

)
sin [(k−q)x] . (62)
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It is easy to see that in the rest frame of the wave packet Φ1(x) = 0, because changing the
integration variables k → −k and q → −q changes the sign of the integrand J(k,q) →
J(−k,−q) = −J(k,q), and in the rest frame of the wave packet φ(k) depends only on the
absolute value of k and not on its direction.

For the remaining integrals in (62) one could work out the angular integrations in

Φ2(x) = P
∞∫
0

dk dq

∫
dn1 dn2

k2q2φ(kn1)φ(qn2)
(2π)62Ek2Eq

×

× [kn1 + qn2]
1

Ek − Eq
sin [(kn1 − qn2)x] (63)

by again keeping in mind that φ(kn) does not depend on the direction vector n in the rest
frame of the wave packet and using the following:∫

dn1dn2 [kn1 + qn2] sin [(kn1 − qn2)x] =

= − (4π)2

2kq
x

|x|3 [(k − q) sin ((k + q)|x|) − (k + q) sin ((k − q)|x|)] . (64)

Using (64) and an obvious identity

1
Ek − Eq

=
Ek + Eq

(k − q)(k + q)
,

(63) can be written in the following way:

Φ2(x) = − 1
32π4

x
|x|3P

∞∫
0

dk dq
kq(Ek + Eq)φ(k)φ(q)

EkEq
×

×
[
sin ((k + q)|x|)

k + q
− sin ((k − q)|x|)

k − q

]
. (65)

One might notice that the singularities introduced by a generalized function P(Ek − Eq)−1

due to (59) disappear thanks to the corresponding sin ((k ± q)|x|) in the numerator of the
integrals in (65). While the remaining integrals in (65) can be calculated only for explicit
forms of the function φ(k), we could proceed further by noting that, in the limit |x| → ∞,
the terms

sin ((k ± q)|x|)
k ± q

could be replaced by delta functions with the argument k ± q due to the following relation:

lim
x→∞

sin αx

α
= πδ(α). (66)

The ˇrst delta function δ(k+q) cancels the integral because the integrand is zero at q = k = 0.
A non-zero contribution comes from the second delta function δ(k − q). Therefore,

Φ2(x) =
x

16π3|x|3

∞∫
0

dk
k2φ2(k)

Ek
=

1
4π

x
|x|3 , (67)
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where one might notice that the remaining integral in (67) reduces to the normalization integral
in (7) (multiplied by 4π2) in the rest frame of the wave packet.

To obtain (67) we used the limit |x| → ∞. At what distance |x| will (67) be a good
approximation? A dimensional analysis suggests that if φ(k) can be characterized by a certain
momentum ®width¯ σp, then this approximation works with a good accuracy for |x| � 1/σp.
Therefore, we have just proved that, for a wave packet of an arbitrary form, the time-integrated
	ux density displays the asymptotic behavior:

Φ(x) =
1
4π

x
|x|3 at |σpx| � 1. (68)

2.3. Asymptotic Behavior of the Time-Integrated Probability Density. We will now
inspect the asymptotic nature of the time-integrated probability density

P (x) ≡
∞∫
0

dt ρ(t,x) = P1(x) + P2(x), (69)

where P1,2(x) are deˇned via (59) as follows:

P1(x) =
∫

dk dqΠ(k,q)πδ(Ek − Eq) cos [(k − q)x] , (70)

P2(x) =
∫

dk dqΠ(k,q)P 1
Ek − Eq

sin [(k − q)x] . (71)

In the rest frame of the wave packet P2(x) = 0. As is easy to see, changing the variables
k → −k and q → −q changes the sign of the integrand, while the integration limits remain
the same. Let us compute P1(x):

P1(x) =
1

|x|2

∞∫
0

dk kφ2(k)
(2π)3

sin2(k|x|) =
1

4π|x|2
∫

dkφ2(k)
(2π)32Ek

Ek

k
− δP1(x), (72)

where

δP1(x) =
1

|x|2
∂

∂|x|

∞∫
0

dk kφ2(k)
(2π)3

sin (2k|x|)
2k

. (73)

One may note that
lim

|x|→∞
δP1(x) = 0

because in this limit

lim
|x|→∞

sin 2k|x|
2k

= πδ(2k)

and

lim
|x|→∞

∞∫
0

dk kφ2(k)
(2π)3

sin (2k|x|)
2k

=
kφ2(k)
2(2π)3

∣∣∣∣∣
k=0

= 0.
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Therefore,

P (x) =
1

4π|x|2
〈
|v|−1

〉
at |σpx| � 1. (74)

Thus, we have shown that the time-integrated probability density also scales as 1/|x|2 with
a coefˇcient of proportionality equal to the mean of the inverse absolute value of the wave-
packet velocity, as was suggested by (57):

∞∫
0

dt ρ(t,x) =
〈
|v|−1

〉 ∞∫
0

dt |j(t,x)|. (75)

Let us note, however, that despite the fact that the mean velocity in the rest frame of the
wave packet is zero, its mean absolute value (and therefore its inverse) is not zero. This is in
contrast to the plain wave, where the velocity in the rest frame of a particle is zero, making
it impossible for (75) to be the plain wave solution.

As we have shown in this section, the asymptotic behavior of 1/|x|2 is valid for both
the time-integrated probability density ρ(t,x) and the 	ux density j(t,x) for wave packets of
an arbitrary form satisfying the KleinÄGordon equation. We will now show that the 1/|x|2
behavior applies to more general situations following from the continuity equation, which
also holds true for solutions to both the Schroedinger and Dirac equations.

3. THE CONTINUITY EQUATION AND 1/|x|2

The continuity equation for a quantum state with ρ(t,x′), being the probability density to
observe the particle in point x′ at time t, and j(t,x′), the corresponding 	ux density, is well
known:

∂ρ(t,x′)
∂t

+ ∇j(t,x′) = 0. (76)

Equation (76) could be rewritten as follows:

∂

∂t

∫
|x′|�|x|

dx′ρ(t,x′) = −
∫
S

dS j(t,x′), (77)

where the integration is limited by a sphere S of radius |x|. If the radius |x| is sufˇciently
large and time t is so small that the wave packet is not dispersed signiˇcantly (both conditions
are satisˇed if |x| � σx(t)), then one might expect that the integral is almost saturated:∫

|x′|�|x|

dx′ρ(t,x′) ≈ 1

and
∂

∂t

∫
|x′|�|x|

dx′ρ(t,x′)
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vanishes. Therefore, the right-hand side of (77) also vanishes. This implies that the 	ux
density should decrease faster than 1/|x|2. The 	ux density example for the noncovariant
Gaussian wave packet in (22) agrees with this conclusion.

Let us perform the time integration for the left- and right-hand sides between zero and
inˇnity. Therefore,∫

|x′|�|x|

dx′ρ(∞,x′) −
∫

|x′|�|x|

dx′ρ(0,x′) = −
∫
S

dSΦ(x′), (78)

where Φ(x′) =
∞∫
0

dt j(t,x′) is the 	ux density integrated over the time. By deˇnition

P (t, |x|) ≡
∫

|x′|�|x|

dx′ρ(t,x′) (79)

gives the probability to ˇnd a particle within a sphere of radius |x| at time t. Apparently,
due to dispersion of the wave packet, the probability to ˇnd a particle within any volume of a
ˇnite size tends to zero at t → ∞ because the particle leaves the volume. On the other hand,
at |x| much larger than the wave packet's ®size¯ the value of P (0, |x|) is very close to unity
because initially the wave packet is almost fully contained within a large enough volume.
With these conditions (78) becomes∫

|x′|�|x|

dx′ρ(0,x′) =
∫
S

dSΦ(x′) ≈ 1, (80)

from which it follows immediately that in the rest frame of the wave packet

|Φ(|x|)| =
1

4π|x|2 .

Therefore, the 1/|x|2 dependence holds true for any wave-packet solution of the KleinÄGordon
and/or Dirac equations with ˇnite normalization (whereas plain waves do not have a ˇnite
norm). At any given moment in time the 	ux vanishes faster than 1/|x|2.

4. DISCUSSIONS AND CONCLUSIONS

Let us brie	y discuss the main points raised in this paper. A wave packet possesses
some characteristics of a ®particle¯ or a solid body, which has well-deˇned mean energy and
momentum, while the wave packet is off-shell. In other words, its energy in the rest frame
of the wave packet is not equal to the mass of the waves composing the packet. This can be
easily seen from (11) in the rest frame:

〈E〉 =
∫

dk |φ(k)|2
(2π)32Ek

Ek � m

∫
dk |φ(k)|2
(2π)32Ek

= m,

where we used the normalization (7).
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A wave packet follows the classical trajectory for its mean 3-coordinate: 〈x〉 = 〈v〉t. On
the other hand, a particle described by the wave packet can be detected at any place in the
Universe, though the probabilities near the classical trajectory and far away from it differ
sharply.

Wave packets, by their nature, disperse over time. The dispersion is very different between
the direction along the mean velocity and the transverse direction. We addressed this issue
with the help of noncovariant and covariant Gaussian models, and found that the noncovariant
wave packet predicts too slow a longitudinal dispersion relative to the covariant model. This
makes a dramatic difference for ultrarelativistic particles like a neutrino with γ10, which will
not disperse signiˇcantly in the longitudinal direction during the lifetime of the Universe
according to the noncovariant model. However, using the covariant model, and assuming
an initial wave packet spatial size on the order of 1 μm, such a neutrino will disperse in
about 10−4 s.

By performing calculations for a wave packet of an arbitrary form we conˇrmed in Sec. 2
that the relationship between the longitudinal and transverse dispersion times given by the
covariant Gaussian model is correct. Moreover, we found a general formula for the dispersion
of a wave packet of an arbitrary form and found that it linearly increases with time with a
coefˇcient of proportionality equal to the wave packet's velocity dispersion.

Finally, we addressed the question of interpretation of the dispersion of a wave packet,
which is often considered as a disadvantage in attempts to describe a ®stable particle¯ whose
wave function vanishes with time. Proceeding from simple examples of Gaussian wave
packets describing a spinless particle, generalizing it to wave packets of an arbitrary form, and
ˇnally considering the continuity equation, we ˇnd that the time-integrated 	ux or probability
density always displays an asymptotic behavior which is proportional to 1/|x|2 in the rest
frame of the wave packet, as one would expect for an ensemble of classical particles if
its number density is normalized to the number of particles in the ensemble. The analysis
of correspondence between an ensemble of one-particle wave packets and uniform 	ux of
particles was also discussed in [2, 6].

As we have demonstrated in this paper, the origin of 1/|x|2 law for quantum objects is
their dispersion with time. For wave packets sufˇciently narrow in time this law appears
automatically provided the detection time is much longer than the wave-packet time width.
On the other hand, accelerator experiments with beams very narrow in time or experiments
at short enough distances might probe deviations from 1/|x|2 law.
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