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NUCLEAR DYNAMICS AT THE GEOMETRY
OF VANISHING FLOW IN HEAVY-ION COLLISIONS
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We study the time evolution and mass dependence of various quantities (such as average and
maximum central density, collision dynamics, participant spectator matter, and average and maximum
temperature) at the geometry of vanishing 	ow (GVF) throughout the mass range between 80 and
262 units. We ˇnd that the reaction time at 100 MeV/nucleon of the geometry of vanishing 	ow is
smaller for lighter nuclei compared to heavier ones. All the quantities can be parameterized by a power
law dependence. The maximal values of corresponding quantities are also shifted accordingly.

ˆ§ÊÎ ¥É¸Ö Ô¢μ²ÕÍ¨Ö ¢μ ¢·¥³¥´¨ ¨ § ¢¨¸¨³μ¸ÉÓ μÉ ³ ¸¸Ò · §²¨Î´ÒÌ ¢¥²¨Î¨´ (É ±¨Ì ± ± ¸·¥¤´ÖÖ
¨ ³ ±¸¨³ ²Ó´ Ö Í¥´É· ²Ó´Ò¥ ¶²μÉ´μ¸É¨, ¤¨´ ³¨±  ¸Éμ²±´μ¢¥´¨Ö, ³ É¥·¨Ö-¸¶¥±É Éμ· ¨ ¸·¥¤´ÖÖ ¨
³ ±¸¨³ ²Ó´ Ö É¥³¶¥· ÉÊ·Ò) ¢ £¥μ³¥É·¨¨ ¨¸Î¥§ ÕÐ¥£μ ¶μÉμ±  ¢ ¨´É¥·¢ ²¥ ³ ¸¸ μÉ 80 ¤μ 262 ¥¤¨´¨Í.
ˆ¸¸²¥¤μ¢ ´¨¥ ¶μ± §Ò¢ ¥É, ÎÉμ ¢·¥³Ö ·¥ ±Í¨¨ ¢ £¥μ³¥É·¨¨ ¨¸Î¥§ ÕÐ¥£μ ¶μÉμ±  ¶·¨ 100 ŒÔ‚/´Ê±²μ´
³¥´ÓÏ¥ ¤²Ö ¡μ²¥¥ ²¥£±¨Ì Ö¤¥· ¶μ ¸· ¢´¥´¨Õ ¸ ÉÖ¦¥²Ò³¨. ‚¸¥ ¢¥²¨Î¨´Ò ³μ¦´μ ¶ · ³¥É·¨§μ¢ ÉÓ
¸É¥¶¥´´μ° § ¢¨¸¨³μ¸ÉÓÕ. Œ ±¸¨³ ²Ó´Ò¥ §´ Î¥´¨Ö ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì ¢¥²¨Î¨´ ¸¤¢¨£ ÕÉ¸Ö ¢ ¸μμÉ-
¢¥É¸É¢¨¨ ¸ É ±¨³ ¦¥ ¶·¨´Í¨¶μ³.

PACS: 24.10.Pa; 25.70.Pq

INTRODUCTION

The heavy-ion reactions at intermediate energies have been used extensively over the last
three decades to investigate the hot and dense nuclear matter that also shed light on nuclear
matter equation of state (EOS) as well as on in-medium nucleonÄnucleon (nn) cross section.
Among various phenomena, collective transverse in-plane 	ow [1Ä3] has been found to be
one of the most sensitive observables. Lot of experimental as well as theoretical efforts have
been made to study the transverse in-plane 	ow [4]. The variation in the 	ow as a function of
beam energy re	ects the competition between the attractive (due to mean ˇeld) and repulsive
interactions (due to nucleonÄnucleon collisions). At a particular energy, the net transverse
in-plane 	ow vanishes, since the strengths of these two interactions counterbalance each other.
This energy is termed as energy of vanishing 	ow (EVF) [2]. The EVF has been found to be
sensitive to the mass of the colliding system [2,5Ä7]. A power law mass dependence (αAτ )
of EVF has also been reported in the literature.
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The colliding geometry, on the other hand, also plays an important role in determining the
	ow as well as its disappearance. As one moves away from the perfectly central collisions,
the transverse 	ow increases, reaching a maximum at semicentral collisions, then decreases
and ˇnally switches to negative domain due to lack of binary nucleonÄnucleon scattering.
The value of impact parameter where collective 	ow vanishes (crosses zero) is termed as
geometry of vanishing 	ow (GVF) [7]. This study revealed the sensitivity of the system size
of GVF to the nucleonÄnucleon cross section as well as to momentum-dependent interactions.

In this report, we aim to look for the complete analysis of the dynamics at GVF throughout
the mass range between 80 and 262 units. The present study is carried out within the
framework of isospin-dependent molecular dynamics (IQMD) model [8,9], which is discussed
below.

1. THE MODEL

In IQMD model, baryons are represented by Gaussian-shaped density distributions
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1
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These hadrons propagate using the Hamilton equations of motion:
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The baryon potential V ij , in the above relation, reads as
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Here t4 = 4C with C = 32 MeV and Zi and Zj denote the charges of the ith and jth baryon,
and T3i and T3j are their respective T3 components (i.e., 1/2 for protons and −1/2 for
neutrons). The parameters μ and t1, . . . , t4 are adjusted to the real part of the nucleonic
optical potential. For the density dependence of the nucleon optical potential, standard
Skyrme-type parametrization is employed.

2. RESULTS AND DISCUSSIONS

The ®directed transverse momentum 〈pdir
x 〉¯ used in the calculations reads as [10]

〈pdir
x 〉 =

1
A

A∑
i=1

sign {y(i)} px(i), (5)
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where y(i) and px(i) are, respectively, the rapidity and momentum of the ith particle. The
rapidity is deˇned as

y(i) =
1
2

ln
E(i) + pz(i)
E(i) − pz(i)

, (6)

where E(i) and pz(i) are, respectively, the energy and longitudinal momentum of the ith par-
ticle. The value of the impact parameter at which 	ow disappears is termed as GVF, as we
have discussed in Introduction.

For the present study, we simulated the reactions of 40Ca+ 40Ca, 58Ni+ 58Ni,
93Nb+ 93Nb, 118Sn + 118Sn and 131Xe+ 131Xe at their respective geometry of vanishing
	ow (GVF) at an incident energy of 100 MeV/nucleon. The geometry of vanishing 	ow for
these systems reads as 0.5, 0.6, 0.7, 0.7 and 0.8 [11]. In the following, we shall ˇrst study
the time evolution and then present the mass dependence of different quantities.

First of all, we shall present results of nuclear density which is deˇned as

ρ(r, t) =
1

AP + AT

AP +AT∑
i=1

1
(2πL)3/2

exp
[
−(r− ri(t))2

2L

]
. (7)

Here AT and AP stand, respectively, for the mass of the target and projectile. In actual
calculations, we take a sphere of radius 2 fm around the centre of mass and compute the
density at each time step during the reaction using the above equation. Naturally, one can
either extract an average density 〈ρavg〉 over the whole sphere or a maximal value of the
density 〈ρmax〉 reached anywhere in the sphere.

Fig. 1. The evolution of the maximum density 〈ρmax〉 (a) and average density 〈ρavg〉 (b) reached in a

central sphere of radius 2 fm as a function of time
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In Fig. 1, a and b, we display the 〈ρmax〉/ρ0 and 〈ρavg〉/ρ0 as a function of reaction time.
The displayed reactions are for the reactions of 40Ca+ 40Ca, 58Ni+ 58Ni, 93Nb + 93Nb,
118Sn + 118Sn and 131Xe+ 131Xe spreading over the whole mass range. It is evident that
maximal ρmax for lighter systems is slightly higher compared to heavier ones. A similar
trend can be seen for the evolution of ρavg. Also, in the lighter nuclei, reaction ˇnishes
much earlier compared to the heavier ones (131Xe+ 131Xe). Similarly, the peaks in (the ρmax

and ρavg) densities are also delayed in heavier nuclei compared to lighter ones. This is
because the value of GVF is larger for heavier nuclei (0.8 for 131Xe + 131Xe) compared to
lighter nuclei (0.5 for 40Ca+ 40Ca). Due to the large value of GVF, the nucleonÄnucleon
collisions would be lesser and, therefore, less compression is achieved in these reactions. A
wider density zone in heavier colliding nuclei over a long time span indicates the ongoing
interactions among the nucleons, which is in agreement with the results as reported in [12].

Another quantity linked directly with the density is the collision rate. In Fig. 2, we
display the net collision rate as a function of reaction time. Due to the larger interaction
volume in heavier nuclei, the interactions among nucleons continue for a longer time, which
is also evident from the density proˇle (Fig. 1). Further, a ˇnite extended density zone in
heavier nuclei leads to more nucleonÄnucleon collisions. From the ˇgure, we also see that
the collision rate proˇle of Sn + Sn reaction is more extended compared to Nb+ Nb. This
behavior is opposite to what we have observed for other reaction from Ca+Ca to Nb+ Nb.
This is because the GVF is the same for Nb +Nb and Sn +Sn; therefore, there will be more
binary collisions in Sn +Sn (because of greater mass) compared to Nb +Nb. On the other
hand, the collision rate decreases as we move from Ca+Ca to Nb +Nb and from Sn + Sn

Fig. 2. Same as Fig. 1, but rate of allowed collisions dNcoll/dt versus reaction time
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to Xe+Xe. This is because the GVF moves towards the peripheral geometries; therefore,
there are less binary collisions even though the mass is increasing as we are moving towards
peripheral geometries. Similar behavior can be noted from density proˇle also (compare
dotted and dash-dotted lines).

It is well known from earlier studies [13] that participant-spectator matter acts as an
indicator of the thermalization in a reaction. In the present study, we deˇne the participant
and spectator matter as: all the nucleons having experienced at least one collision are counted
as participant matter. The remaining matter is labelled as spectator matter. The participant-
spectator matter is scaled to the total mass of the reacting nuclei. These deˇnitions give us
the possibility of analyzing the reaction in terms of the participant-spectator ˇreball model.
These deˇnitions, however, are made of theoretical interest since the matter deˇned in these
zones cannot be measured.

Fig. 3. The time evolution of normalized participant matter (a) and spectator matter (b) deˇned in terms
of nucleonÄnucleon collisions

In Fig. 3, we display the normalized participant matter (plot a) and spectator matter
(plot b) as a function of reaction time. Here participant matter is deˇned using the nucleonic
concept. As expected, at the start of the reaction, all the nucleons constitute spectator matter.
Therefore, no participant matter exists at t = 0 fm/c. As the reaction proceeds, participant
matter increases with the corresponding decrease of spectator matter. Since, for the case of
lighter ones, reaction ˇnishes much earlier, the transition from the spectator to participant
matter is swift and sudden. On the other hand, in heavier colliding nuclei, the transition from
spectator to participant is slow and gradual.

In Fig. 4, we display the maximal value of average and maximum density, labeled as 〈ρavg〉
and 〈ρmax〉, respectively, versus composite mass of the system. Interestingly, the maximal
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Fig. 4. The maximal value of 〈ρmax〉 (open
circles) and 〈ρavg〉 (closed circles) as a func-

tion of composite mass of the system. Lines

represent a power law ˇt (αAτ )

Fig. 5. The system size dependence of partici-
pant matter (open circles) and spectator matter

(closed circles)

value of 〈ρavg〉 and 〈ρmax〉 follows a power law (αAτ ) with τ being −0.21 ± 0.03 for the
average density 〈ρavg〉 and −0.25± 0.04 for the maximum density 〈ρmax〉. In other words, a
slight decrease in the density occurs with increasing size of the system, as explained earlier.

The mass dependence of the participant and spectator matter is depicted in Fig. 5. From
the ˇgure, we see a nearly mass-independent behavior of participant and spectator matter.
This is because the GVF is more (peripheral collisions) for heavier systems and is less for
lighter systems. This means that in case of lighter systems, collisions are central and this
counterbalances the mass effect (which otherwise will lead to decrease in participant matter
in lighter systems, if the reactions are simulated at ˇx impact parameter).

The temperature during the simulations of heavy-ion collisions is calculated using ThomasÄ
Fermi formalism. So, we ˇrst give the details of hot ThomasÄFermi formalism.

2.1. The Hot ThomasÄFermi Formalism. In a hot nuclear matter at temperature T , the
momentum distribution of nucleons is given by FermiÄDirac distribution

n(k, T ) =
1

1 + exp {[ε̃(k) − μ]/T } . (8)

Here ε̃(k) is the energy of the nucleon with momentum k and μ is the chemical potential,
which is determined by the normalization to a given density of nuclear matter ρ

ρ =
g

(2π)3

∫
F

n(k) dk, (9)
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where g(= 4) is the spin-isospin degeneracy of a nucleon with momentum k. The kinetic
energy density (�2τ̃ /2m) and the entropy σ̃ are deˇned as

τ̃ =
g

(2π)3

∫
F

k2n(k) dk, (10)

σ̃ = − g

(2π)3

∫
F

{n(k) ln n(k) + [1 − n(k)] ln[1 − n(k)]} dk. (11)

All the integrations in the above equations (8)Ä(10) are performed over the whole Fermi sea F
occupied by the hot nuclear matter. In a single nuclear matter limit, F is a diffuse Fermi
sphere with its edge smeared out to inˇnity due to the ˇnite temperature. When one uses the
effective mass approximation for the single particle energies ε̃(k), i.e.,

ε̃(k) =
�

2k2

2m
+ U(k) � �

2k2

2m∗ + U(0), (12)

Eq. (7) reads

n(k, T ) =
{

1 + exp
[

�
2k2

2m∗T
− η̃

]}−1

, (13)

with η̃ = (μ−U(0))/T . In the single nuclear matter limit, the integration in Eqs. (8)Ä10) can
be performed in a standard way. For details, see [14].

But the momentum distribution of nucleons in the overlap region during a heavy-ion
collision is not like that of single nuclear matter. F now consists of two Fermi spheres
(say F1 and F2) separated by the relative momentum kR (see Fig. 6). At the initial stages
of the collision, kR is large and is given by

√
2mElab/�2, with Elab the incident energy

per nucleon in the laboratory frame. As the collision proceeds, the target and projectile start
to overlap and during the reaction, the area in momentum space between the two original
Fermi spheres will be occupied and relative momentum starts becoming smaller and smaller.
But even at the decomposition stage of the reaction, the average kR still differs signiˇcantly

Fig. 6. Momentum distribution of nucleons in two colliding Fermi spheres separated by their relative
momentum kR. Here kr and kz are cylindrical coordinates
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from zero. Therefore, it is necessary to take into account properly the deformed momentum
distribution consisting of two interpenetrating Fermi spheres at each time step. In the study of
the heavy-ion optical potentials at ˇnite temperatures [15], the momentum distribution of the
nucleons in two colliding nuclear matters at temperature T is evaluated in the rest frame of the
nuclear matter with the higher density (say, F1 in Fig. 6) and in cylindrical coordinates kr, kz,
it can be written as

n(k) = n1(kr , kz) =
1

1 + exp [�2(k2
r + k2

z)/(2m∗T ) − η1]
if kz < k0,

n2(kr , kz) =
1

1 + exp [�2(k2
r + (kz − kR)2)/(2m∗T )− η2]

if kz � k0,

(14)

with

k0 =
k2

R − 2m∗T (η̃1 − η̃2)
2kR

. (15)

We note that k0 is chosen is such a way that n(k) is a continuous function of k; i.e.,
n1(kr, k0) = n2(kr, k0) and η̃1 and η̃2 are determined by the normalization to the nuclear
matter densities in the two Fermi spheres

ρi =
g

(2π)3

∫
Vi

n(k) dk, (16)

where indices i = 1, 2 correspond to nucleons in the ˇrst (F1) and second (F2) Fermi spheres,
respectively. V1 and V2 are the volumes in momentum space with kz < k0 and kz � k0,
respectively. The kinetic energy density (�2τ̃ /2m) and the entropy σ̃ are deˇned in the same
way as for the one-Fermi-sphere case:

τ̃i =
g

(2π)3

∫
Vi

k2n(k) dk, (17)

σ̃i = − g

(2π)3

∫
Vi

{n(k) ln n(k) + [1 − n(k)] ln [1 − n(k)]} dk. (18)

Here all integrations must be performed over the cylindrical coordinates kr, kz with the center
chosen as that of the big sphere (F1). For details, see [12]. In order to calculate the local
temperature at each point r in each time step, we need to know the matter density and the
kinetic energy densities of the target and the projectile which are given as

ρT (r, t) =
AT∑
i=1

ρi(r, t), ρP (r, t) =
AP∑
i=1

ρi(r, t) (19)

and

τ̃T (r, t) =
AT∑
i=1

p2
i (t)
2m

ρi(r, t), τ̃P (r, t) =
AP∑
i=1

p2
i (t)
2m

ρi(r, t), (20)

where ρi(r, t) is given by Eq. (6).
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Note that ρ(r, t) =
AT +AP∑

i=1

ρi(r, t) gives us the total matter density in coordinate space.

These matter densities and kinetic energy densities are calculated in the simulation at the
position of each particle in each time step. Using these four values, one can calculate
by inversion the expressions of Eqs. (8), (9) and (11) η̃1 and η̃2 connected with the Fermi
energies, the local temperature T and the relative momentum kR. These equations are solved
by transferring the coordinate space and the momentum space to the frame of the nucleus
which has the higher density at the point (r, t) considered. Since it is very time-consuming to
solve these equations at each time step, we generate ˇrst 4-dimensional tables of (ρ1, ρ2, τ̃1, τ̃2)
as a function of (η̃1, η̃2, T, kR) for the values which can be extracted form the simulation of
heavy-ion reactions within IQMD. At each time step during the evolution of the heavy-ion
system, these tables are used to obtain η̃1, η̃2, and the temperature T by inverse interpolation
from the actual values ρ1, ρ2, τ̃1, τ̃2 found in the simulation. It is worth mentioning that due to
this complicated procedure of extraction of temperature at the position of individual nucleons
in each time step, the calculation time increases drastically.

In principle, a true temperature can be deˇned only for a thermalized and equilibrated
matter. Since in heavy-ion collisions the matter is non-equilibrated, one cannot talk of tem-
perature. However, one can look in terms of the local environment only. In the present case,
we follow the description of temperature as given in [12, 16]. The extraction of the tempera-
ture T is based on the local density approximation; that is, one deduces the temperature in a
volume element surrounding the position of each particle at a given time step [12,16]. Here,
we postulate that each volume element of nuclear matter in coordinate space and time has some

Fig. 7. Same as Fig. 5, but for the maximal

value of the average temperature

®temperature¯ deˇned by the diffused edge of
the deformed Fermi distribution consisting of two
colliding Fermi spheres, which is typical for a
nonequilibrium momentum distribution in heavy-
ion collisions.

In this formalism (dubbed the hot ThomasÄ
Fermi approach) [12], one determines extensive
quantities such as the density and kinetic energy
as well as entropy with the help of momentum
distributions at a given temperature. The details
of the formalism have been discussed earlier. Us-
ing this formalism, we also extracted the average
and maximum temperature within a central sphere
of 2-fm radius as described in the case of density.

In Fig. 7, we plot the maximal value of aver-
age and maximum temperature labeled as 〈T avg〉
and 〈T max〉, respectively, as a function of com-
posite mass of the system. One sees that both
these quantities can be parameterized in terms
of power law function αAτ , τ being equal to
−0.14± 0.04 and −0.05± 0.03, respectively, for
the average and maximum temperature. Hence,
one can conclude that both average and maximum
temperatures show a little dependence on system
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size. Since in our present case we have carried out the study at ˇxed incident energy, this
leads to little dependence of temperature on the system mass.

3. SUMMARY

We have studied the mass dependence of various quantities (such as average and maximum
central density, temperature and participant spectator matter) at the geometry of vanishing
	ow. Our calculations present several interesting facts. The reaction saturation time is
smaller for lighter nuclei compared to heavier ones. The maximal value of the density,
temperature and collision rate are also shifted accordingly. In all the cases, a power law
dependence can be seen. All the quantities are found to be nearly mass-dependent except
participant spectator matter, which is found to be mass-independent.
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