МИКРОДЕФОРМАЦИИ В СТАЛЯХ С ДИСПЕРСИОННЫМ УПРОЧНЕНИЕМ

Г. Д. Бокучава, И. В. Папушкин, В. В. Сумин, Д. Азнабаев, Б. Мухаметулы, А. М. Балагуров

Объединенный институт ядерных исследований, Дубна

Д. В. Шептяков

Институт им. Пауля Шеррера, Виллиген, Швейцария

Методом нейтронной дифракции высокого разрешения исследованы микродеформации в трех сериях образцов из различных марок нержавеющих аустенитных дисперсионно-упрочненных сталей, которые используются для производства различных конструкционных деталей в реакторостроении. Изучено влияние температуры и длительности термообработки на выделение частиц дисперсионно-упрочняющей фазы, а также на изменение параметров и микродеформаций кристаллической решетки. Во всех изученных сталях наблюдается рост микродеформации при срыве когерентности.

Using high-resolution neutron diffraction, microstrain was investigated in three series of samples of stainless austenitic dispersion-hardened steels, which are used as various structural reactor components. The effect of temperature and duration of heat treatment on the precipitation of dispersion-hardened phase particles, as well as on lattice parameter changes and microstrain, was studied. In all studied steels an increase in microstrain at coherence failure was observed.

PACS: 61.05.F

введение

Повышение прочности конструкционных материалов позволяет уменьшить расход материала при изготовлении деталей машин и механизмов и значительно увеличить их эксплуатационный ресурс. При создании материалов для атомной промышленности (сталей, структурированных сплавов), помимо повышения прочности, актуальной проблемой является улучшение их радиационной стойкости, т. е. снижение склонности к охрупчиванию и вакансионному распуханию. Одним из наиболее перспективных путей решения этих задач признано упрочнение металла или сплава за счет образования в объеме материала химически устойчивых неметаллических дисперсных фаз субмикронного размера, которые тормозят перемещение дислокаций в нем. Соответственно, важнейшая задача конструкционного материаловедения — понимание процессов, происходящих при дисперсионном упрочнении сталей и сплавов, что позволяет целенаправленно создавать материалы с необходимыми механическими свойствами.

Процесс дисперсионного упрочнения может происходить в закаленном материале под воздействием отжига в определенном интервале температур или путем его облучения. Уже хорошо известно, что прочность, ползучесть и радиационная стойкость

246 Бокучава Г.Д. и др.

упрочненного материала в значительной степени зависят от состояния дисперсной фазы: степени когерентности ее кристаллической решетки с решеткой матрицы, места выпадения наночастиц и их размера. Кроме того, появление частиц второй фазы сопровождается изменением межплоскостных расстояний в матрице и, тем самым, появлением микронапряжений, уровень которых оказывает значительное влияние на характеристики материала.

Важную роль в изучении процессов, происходящих в конструкционных материалах при их дисперсионном упрочнении, играют методы ядерной физики и особенно дифракция тепловых нейтронов. Созданные в нескольких нейтронных центрах дифрактометры высокого разрешения обладают уникальными возможностями при определении микроструктуры материалов и изделий благодаря высокой точности результатов, возможности анализа многофазных материалов и, особенно, большой глубине проникновения нейтронов, которая в сотни раз превосходит глубину проникновения рентгеновских лучей, что позволяет регистрировать объемные эффекты.

В настоящей работе приведены результаты структурных исследований нескольких нержавеющих аустенитных реакторных сталей с помощью нейтронографии высокого разрешения. Изучались стали с дисперсионным упрочнением частицами карбида ванадия (VC) и интерметаллида Ni₃Ti. Анализ микродеформаций в этих сталях, возникающих при их упрочнении, проведен в зависимости от температуры и времени старения, и получена информация, важная для определения степени когерентности дисперсионноупрочняющих наночастиц с аустенитной матрицей.

1. МЕТОДИКА ИЗМЕРЕНИЙ И ОБРАЗЦЫ

Дифракционные эксперименты были проведены на установке HRPT [1], действующей на источнике нейтронов SINQ в Институте им. Пауля Шеррера (Швейцария). HRPT работает на постоянной длине волны и является дифрактометром высокого разрешения (в минимуме кривой разрешения $\Delta d/d \approx 0,001$), что позволило провести анализ микроструктурных характеристик образцов.

На предварительном этапе работы была проведена оценка разрешающей способности НRPT и его чувствительности к уширению дифракционных пиков, основными причинами которых являются микродеформации в материале и конечные размеры кристаллитов. Для этого были измерены дифракционные спектры от порошка $Na_2Al_2Ca_3F_{14}$ (NAC), традиционно использующегося для калибровки и определения функции разрешения нейтронных дифрактометров. Как видно из рис. 1, на котором показано сравнение функции разрешения HRPT с ширинами некоторых дифракционных пиков от наших образцов сталей, имеющиеся эффекты уширения с помощью этого дифрактометра могут быть измерены достаточно легко и надежно.

Для количественных оценок следует воспользоваться формулами, связывающими ширину дифракционных линий с характеристиками микроструктуры материала — величиной микродеформаций $\varepsilon = \Delta a/a_0$, a_0 — параметр элементарной ячейки, и характерным размером когерентно рассеивающих областей D (обычно их называют размером кристаллитов). Соответствующие вклады в ширину линии есть (см., например, [2])

$$\beta_D = \frac{k\lambda}{D\cos\theta}, \quad \beta_\varepsilon = 4\varepsilon \operatorname{tg}\theta, \tag{1}$$

Рис. 1. Ширины некоторых дифракционных пиков (точки) от двух образцов стали 40Х4Г18Ф (отжиг при 600 и 700 °С), измеренных на НRРТ при $\lambda = 1,494$ Å, в сравнении с его функцией разрешения (сплошная линия)

где β — интегральная ширина в радианах в шкале углов рассеяния, т.е. площадь пика, деленная на его амплитуду; k — безразмерный коэффициент, зависящий как от сингонии, так и от формы кристалла и т.д., и в общем случае близкий к 0,9 [3]; λ — длина волны, при которой велось измерение; θ — угол Брэгга. Как правило, распределение кристаллитов по размерам дает лоренцевский вклад в ширину линии, тогда как вклад от микродеформаций имеет гауссовский вид. Более важным является то, что угловые зависимости этих двух вкладов существенно различаются и, проводя анализ в широком интервале углов Брэгга, удается уверенно их разделять. Практика работы на HRPT показала, что можно регистрировать уширение пиков из-за наличия микродеформаций при $\varepsilon \ge 10^{-4}$ и конечных размеров кристаллитов при $D \le 2000$ Å.

Образцы для исследования представляли собой аустенитные стали X16H15M3T1 и H26X5T3, обе упрочненные Ni₃Ti, 40X4Г18Ф2, упрочненная VC (далее они обозначаются как S1, S2 и S3 соответственно), изготовленные в виде цилиндров диаметром 6 мм. В исходном состоянии они отжигались при 450 °C в течение 2 ч с последующей закалкой в воде. Температуры их последующей термообработки и время выдержки при них были выбраны на основании результатов работы [4], в которой приведены кинетические кривые выпадения Ni₃Ti в закаленном сплаве Fe–Ni–Ti при изотермических отжигах и при облучении и показано, что характерный размер выделений при изотермическом отжиге 650 °C составил от 3 до 10 нм при изменении времени отжига от 2 до 12 ч. Наши экспериментальные данные получены для стали S1, отожженной в течение 1, 6 и 12 ч при температурах 600 и 700 °C, для стали S2, отожженной при таких же условиях, кроме точек 700 °C (1 и 6 ч).

Измерения дифракционных спектров проведены при комнатной температуре для двух длин волн первичного пучка ($\lambda = 1,1545$ и 1,494 Å). Обработка дифракционных данных проведена по методу Ритвельда с помощью программного пакета FullProf [5], в котором заложена возможность анализа зависимости ширины пиков от угла рассеяния и определения вклада в ширину от микродеформаций кристаллической решетки матрицы и от средних размеров когерентно рассеивающих кристаллитов. Оказалось, что размерный

Рис. 2. Типичный дифракционный спектр от образца из стали X16H15M3T1, измеренный на HRPT при $\lambda = 1,1545$ Å и обработанный по методу Ритвельда. Показаны экспериментальные точки, расчетная и разностная (внизу) кривые и расчетные положения пиков (вертикальные штрихи). Дифракционные пики соответствуют интервалу межплоскостных расстояний 0,55–2,15 Å

эффект в ширинах пиков пренебрежимо мал, т.е. $D \gg 2000$ Å. Наоборот, напряжения вносят существенный вклад, и далее рассмотрены только они. Все основные дифракционные пики в спектрах индицируются в рамках гранецентрированной кубической (ГЦК) группы Fm3m с параметром решетки $a_0 \approx 3,6$ Å. Типичный дифракционный спектр, обработанный по методу Ритвельда, показан на рис. 2.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Экспериментальные данные по параметрам элементарной ячейки и микродеформациям, полученные для двух длин волн нейтронов, хорошо согласуются друг с другом для каждого из образцов, поэтому было проведено их усреднение. Полученные таким образом результаты показаны на рис. 3 и 4 и приведены в таблице. Для параметров ячейки указаны стандартные отклонения, определенные программой FullProf, они очень малы (относительная погрешность заметно меньше чем 10^{-4}). Для микродеформаций расчет ошибки сложен и в программе FullProf не производится. Поэтому ошибка экспериментальных данных была оценена исходя из разброса между результатами, полученными для двух разных длин волн, и составила около $0.5 \cdot 10^{-4}$.

На рис. 3 показано поведение параметра элементарной ячейки сталей при их изотермических отжигах в зависимости от времени выдержки. Видно, что кроме точки для S3 (700 °C) в зависимостях параметра от температуры и времени отжига нет каких-либо особенностей, поэтому далее в основном анализируется только поведение микродеформаций в образцах.

Поведение микродеформаций в сталях при их изотермических отжигах в зависимости от времени выдержки показано на рис. 4. Видно, что отжиг при 600 °C оставляет

Микродеформации в сталях с дисперсионным упрочнением 249

Рис. 3. Поведение параметра элементарной ячейки при изотермических отжигах образцов сталей в зависимости от времени выдержки. Значение параметра в исходном состоянии показано для нулевого значения времени. Ошибки экспериментальных точек меньше размера символов

Рис. 4. Микродеформации в исследуемых образцах при изотермических отжигах образцов сталей в зависимости от времени выдержки. Значение параметра в исходном состоянии показано для нулевого значения времени

микродеформации примерно постоянными или даже уменьшает их. Наоборот, отжиг при 700 °C приводит к значительному увеличению микродеформаций.

Обсудим полученные результаты более подробно.

1. Хромоникелевый аустенит с 1 % Ті. Анализ данных для стали X16H15M3T1, отожженной при температуре 600 °С, показал, что микродеформации остаются примерно на уровне $3,9-4,1\cdot10^{-4}$, хотя твердость по Бринеллю при этом возрастает с 1300 до 1400 МПа. Отжиг при температуре 700 °С повлек увеличение микродеформаций

Режим обра-	a, Å			$\varepsilon \cdot 10^4$		
ботки — отжиг	S 1	S2	S 3	S 1	S2	S3
450°С, 2ч	3,59628(2)	3,58903(2)	3,60935(4)	2,9	3,5	9,4
600°С, 1 ч	3,59604(2)	3,58518(3)	—	2,4	4,5	_
600°С, 6 ч	3,59614(2)	3,58457(3)	3,60974(3)	3,8	3,8	3,5
600°С, 12 ч	3,59626(2)	3,58472(3)	3,60950(3)	3,0	4,8	5,7
700°С, 1 ч	3,59668(2)	3,58525(3)	—	3,7	9,5	_
700°С, 6ч	3,59590(2)	—	—	2,9	—	—
700°С, 12 ч	3,59604(3)	3,58413(5)	3,60029(7)	8,6	16,3	27,1

Параметр решетки и микродеформация сталей S1, S2 и S3, закаленных и состаренных при 600 и 700 °С (1, 6, 12 ч)

с $3.7 \cdot 10^{-4}$ до $9.9 \cdot 10^{-4}$ и незначительное возрастание твердости с 1360 до 1490 МПа. В дифракционных спектрах нет пиков метастабильной фазы γ' –Ni₃Ti даже для режима отжига 700 °C (12 ч), для которого зафиксировано резкое возрастание микродеформаций, что связано с ее небольшим объемным содержанием (менее 1 %).

2. ГЦК-сплав H26X5T3 с 3 вес. % Ті. Для ГЦК-сплава H26X5T3 с 3 вес. % Ті при отжиге 600 °С твердость возрастает от 1360 до 1880 МПа, а микродеформации остаются на уровне $4,0 \cdot 10^{-4}$ при всех временах отжига. При отжиге 700 °С твердость возрастает с 1360 до 3160 МПа, а микродеформации до $18 \cdot 10^{-4}$, т.е. в четыре раза. На нейтронограммах этого сплава наблюдаются дифракционные пики от фазы γ' -Ni₃Ti при обеих температурах отжига (рис. 5). Однако после отжига при 600 °С (и 700 °С, 1 ч) они имеют размытый вид, что говорит о малых размерах частиц фазы. Эти результаты подтверждаются данными просвечивающей электронной микроскопии (ПЭМ) и электронографии [4] — только после отжига при 700 °С (6 и 7 ч) появились частицы фазы γ' -Ni₃Ti. При отжиге 600 °С (и 700 °С, 1 ч) виден твидовый контраст, указывающий на изменения полей напряжения в твердом растворе матрицы из-за появления когерентных наночастиц фазы γ' -Ni₃Ti.

3. Карбидо-ванадиевый аустенит 40Х4Г18Ф2. Для углеродистого аустенита с ванадием 40Х4Г18Ф2 выпадение карбида ванадия при отжиге 600 °С (12 ч) снижает микродеформации с $11 \cdot 10^{-4}$ до $5,58 \cdot 10^{-4}$, а микротвердость тем не менее растет от 2210 до 3130 МПа и далее несколько снижается до 2820 МПа. При этом уменьшение параметра ГЦК-матрицы почти не происходит. Данные ПЭМ указывают на твидовую рябь закаленного и отожженного образцов вплоть до выдержки 12 ч [6]. При этой температуре отжига на начальной ее стадии (1 ч) происходит релаксация твердого раствора аустенита с образованием ванадий-углеродных когерентных кластеров, которые приводят к снятию напряжений в закаленной матрице с хаотическим распределением атомов внедрения и замещения. Вследствие этого уровень микродеформаций падает. Однако образования карбидов ванадия, судя по данным ПЭМ и отсутствию изменения параметра решетки матрицы, не происходит.

Подобное поведение наблюдалось и при распаде азотистого аустенита [7]. Повышение же твердости при этих режимах обработки мы объясняем близостью данной стали к стали Гатфильда, в которой легко происходит $\gamma \to \varepsilon$ мартенситное превращение при деформации, в данном случае при испытании на твердость.

Микродеформации в сталях с дисперсионным упрочнением 251

Рис. 5. Появление дифракционных пиков от фазы γ' –Ni₃Ti в зависимости от температуры и времени отжига закаленного сплава H26X5T3. Видны три интенсивных пика от сплава при $2\theta \approx 42$, 49 и 73°, пики малой интенсивности относятся к Ni₃Ti-фазе

В результате же дестабилизирующего «высокотемпературного» (700–750 °C) старения, проходящего с выделением достаточно крупных (до 9–10 нм) некогерентных частиц VC, аустенитная матрица обедняется углеродом и ванадием. Эти результаты не противоречат нейтронографическим структурным данным. При «высокотемпературном» (700 °C) старении (рис. 3, таблица) из-за образования второй фазы — выпадения некогерентных достаточно крупных (до 9–10 нм) частиц VC — параметр уменьшается от 3,60956 до 3,60050 Å, т.е. на 0,00906 Å, или в пересчете на 1 ат. % углерода это составляет 0,0054 Å. Эта величина типична для изменения параметра решетки ГЦК переходных металлов при растворении в них углерода. Однако наши измерения микродеформаций противоречат общепринятому мнению, что при срыве когерентности (выпадении второй фазы) уровень напряжения вокруг дисперсионно-упрочняющих частиц снижается. Они остаются на уровне микродеформаций, создаваемых когерентными наночастицами, до $30 \cdot 10^{-4}$ для карбидов ванадия в стали $40X4\Gamma18\Phi2$ и чуть ниже для когерентных выделений в случае фазы $\gamma'-Ni_3$ Ti H26X5T3 700 °C (6, 12 ч) (рис. 4).

Если воспользоваться простейшим приближением [6] пересчета микродеформаций в локальные микронапряжения $\sigma = E\varepsilon$, где E — модуль Юнга стали, то из полученных нами данных следует, что в модельном сплаве H26X5T3 $\sigma \approx 300$ МПа, а в карбидованадиевом аустените $\sigma \approx 640$ МПа, что приближается к пределу текучести в этих материалах.

ЗАКЛЮЧЕНИЕ

Характер поведения твердости и параметра кристаллической ГЦК-решетки стали X16H15M3T1 после отпуска не дает информации об изменении структуры вещества. В то время как проведенный анализ указывает на увеличение микродеформаций решетки

252 Бокучава Г.Д. и др.

после отжига при 700 °C (12 ч), вызванных, скорее всего, образованиями кластеров типа Ni₃Ti. При увеличении концентрации титана в сплаве H26X5T3 до 3% прослеживаются стадии предвыделения и выделения частиц второй фазы. Совместный дифракционный анализ и ПЭМ дают информацию о том, что фаза γ' –Ni₃Ti образуется после отжига 700 °C длительностью примерно от 6 ч. В период роста количества предвыделений при 600 °C микродеформации не увеличиваются, хотя твердость повышается. А с ростом когерентно связанных с решеткой интерметаллических наночастиц растут твердость и уровень микродеформаций.

В отличие от стали H26X5T3, где параметр дисперсионно-упрочняющей фазы практически не отличается от параметра решетки матрицы, в стали 40Х4Г18Ф2 параметр решетки наночастиц VC на 15,5 % выше, чем в матрице. Однако и в этом случае при срыве когерентности, вызванном появлением второй фазы, происходит значительный рост микродеформаций, а не их уменьшение, как это иногда утверждается в литературе [8].

Работа выполнена при поддержке гранта РФФИ № 09-02-00289. Нейтронные эксперименты выполнены на нейтронном источнике SINQ (Институт им. Пауля Шеррера, Виллиген, Швейцария). Авторы выражают благодарность Б. Н. Гощицкому, В. В. Сагарадзе и В.И. Бобровскому за полезные дискуссии и обсуждение результатов работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Fischer P. et al. // Phys. B. 2000. V. 276-278. P. 146-147.
- 2. Mittemeijer E. J., Welzel U. // Z. Kristallogr. 2008. V. 223. P. 552-560.
- 3. Holzwarth U., Gibson N. // Nature Nanotechnology. 2011. V. 6. P. 534.
- 4. Сагарадзе В. В. и др. // ФММ. 2011. Т. 112, № 5. С. 543-551.
- 5. Rodríuez-Carvajal J. // Phys. B. 1993. V. 192. P. 55-69.
- 6. Сагарадзе В. В. и др. // ФММ. 2011. Т. 111, № 1. С. 82–92.
- 7. Банных О.А. и др. // Металлы. 2002. № 5. С. 55-59.
- 8. Хирш П. и др. Электронная микроскопия тонких кристаллов. М.: Мир, 1968. 574 с.

Получено 15 мая 2012 г.