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We have investigated the statistical properties of an ensemble of disordered 1D spatial spin chains
(SSCs) of ˇnite length, placed in an external ˇeld, with consideration of relaxation effects. The short-
range interaction complex-classical Hamiltonian was ˇrst used for solving this problem. A system of
recurrent equations is obtained on the nodes of the spin-chain lattice. An efˇcient mathematical algorithm
is developed on the basis of these equations with consideration of advanced Sylvester conditions which
allows one to step by step construct a huge number of stable spin chains in parallel. The distribution
functions of different parameters of spin glass system are constructed from ˇrst principles by analyzing
the calculation results of the 1D SSCs ensemble. It is shown that the behaviors of different distributions
parameters are quite different even at weak external ˇelds. The ensemble energy and constants of spinÄ
spin interactions are being changed smoothly depending on the external ˇeld in the limit of statistical
equilibrium, while some of them such as the mean value of polarizations of the ensemble and parameters
of its orderings are frustrated. We have also studied some critical properties of the ensemble such as
catastrophes in the ClausiusÄMossotti equation depending on the value of the external ˇeld. We have
shown that the generalized complex-classical approach excludes these catastrophes, which allows one
to organize continuous parallel computing on the whole region of values of the external ˇeld including
critical points. A new representation of the partition function is suggested based on these investigations.
Being opposite to the usual deˇnition, it is a complex function and its derivatives are everywhere
deˇned, including at critical points.

ˆ¸¸²¥¤μ¢ ´Ò ¸É É¨¸É¨Î¥¸±¨¥ ¸¢μ°¸É¢   ´¸ ³¡²Ö ´¥Ê¶μ·Ö¤μÎ¥´´ÒÌ 1D-¶·μ¸É· ´¸É¢¥´´ÒÌ ¸¶¨´-
Í¥¶¥° (�‘–) ±μ´¥Î´μ° ¤²¨´Ò, ¶μ³¥Ð¥´´ÒÌ ¢μ ¢´¥Ï´¥¥ ¶μ²¥, ¸ ÊÎ¥Éμ³ ·¥² ±¸ Í¨μ´´ÒÌ ÔËË¥±-
Éμ¢. „²Ö ·¥Ï¥´¨Ö ÔÉμ° ¶·μ¡²¥³Ò ¢¶¥·¢Ò¥ ¡Ò² ¨¸¶μ²Ó§μ¢ ´ ±μ·μÉ±μ¤¥°¸É¢ÊÕÐ¨° ±μ³¶²¥±¸´μ-
±² ¸¸¨Î¥¸±¨° £ ³¨²ÓÉμ´¨ ´. �μ²ÊÎ¥´  ¸¨¸É¥³  ·¥±Ê··¥´É´ÒÌ Ê· ¢´¥´¨° ´  Ê§² Ì ·¥Ï¥É±¨ ¸¶¨´-
Í¥¶¨. �  μ¸´μ¢¥ ÔÉ¨Ì Ê· ¢´¥´¨° · §· ¡μÉ ´ ÔËË¥±É¨¢´Ò° ³ É¥³ É¨Î¥¸±¨°  ²£μ·¨É³ ¸ ÊÎ¥Éμ³ μ¡μ¡-
Ð¥´´ÒÌ Ê¸²μ¢¨° ‘¨²Ó¢¥¸É· , ±μÉμ·Ò¥ ¶μ§¢μ²ÖÕÉ ¶ · ²²¥²Ó´μ, Ï £ §  Ï £μ³, ¶μ¸É·μ¨ÉÓ μ£·μ³´μ¥
±μ²¨Î¥¸É¢μ ¸É ¡¨²Ó´ÒÌ ¸¶¨´μ¢ÒÌ Í¥¶μÎ¥±. �μ¸É·μ¥´Ò ËÊ´±Í¨¨ · ¸¶·¥¤¥²¥´¨Ö · §²¨Î´ÒÌ ¶ · -
³¥É·μ¢ ¸¨¸É¥³Ò ¸¶¨´μ¢μ£μ ¸É¥±² , ¨¸Ìμ¤Ö ¨§ ¶¥·¢ÒÌ ¶·¨´Í¨¶μ¢ ´  μ¸´μ¢¥  ´ ²¨§  ·¥§Ê²ÓÉ Éμ¢
· ¸Î¥Éμ¢ 1D �‘–  ´¸ ³¡²Ö. �μ± § ´μ, ÎÉμ ¶μ¢¥¤¥´¨¥ · §²¨Î´ÒÌ ¶ · ³¥É·μ¢ · ¸¶·¥¤¥²¥´¨° §´ -
Î¨É¥²Ó´μ · §²¨Î ¥É¸Ö ¤ ¦¥ ¶·¨ ¸² ¡ÒÌ ¢´¥Ï´¨Ì ¶μ²ÖÌ. �´¥·£¨Ö  ´¸ ³¡²Ö ¨ ±μ´¸É ´ÉÒ ¸¶¨´-
¸¶¨´μ¢ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° ¢ ¶·¥¤¥²¥ ¸É É¨¸É¨Î¥¸±μ£μ · ¢´μ¢¥¸¨Ö ¢ § ¢¨¸¨³μ¸É¨ μÉ ¢´¥Ï´¥£μ ¶μ²Ö
³¥´ÖÕÉ¸Ö ¶² ¢´μ, ¢ Éμ ¢·¥³Ö ± ± ´¥±μÉμ·Ò¥ ¨§ ´¨Ì, É ±¨¥ ± ± ¸·¥¤´¥¥ §´ Î¥´¨¥ ¶μ²Ö·¨§ Í¨°  ´-
¸ ³¡²Ö ¨ ¶ · ³¥É·Ò Ê¶μ·Ö¤μÎ¥´¨Ö, Ë·Ê¸É·¨·ÊÕÉ. ˆ§ÊÎ¥´Ò É ±¦¥ ´¥±μÉμ·Ò¥ ±·¨É¨Î¥¸±¨¥ ¸¢μ°¸É¢ 
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 ´¸ ³¡²Ö, É ±¨¥ ± ± ± É ¸É·μËÒ Ê· ¢´¥´¨Ö Š² Ê§¨Ê¸ ÄŒμ¸¸μÉÉ¨, ¢ § ¢¨¸¨³μ¸É¨ μÉ ¢¥²¨Î¨´Ò ¢´¥Ï-
´¥£μ ¶μ²Ö. �μ± § ´μ, ÎÉμ μ¡μ¡Ð¥´´Ò° ±μ³¶²¥±¸´μ-±² ¸¸¨Î¥¸±¨° ¶μ¤Ìμ¤ ¨¸±²ÕÎ ¥É ÔÉ¨ ± É -
¸É·μËÒ, ÎÉμ ¶μ§¢μ²Ö¥É μ·£ ´¨§μ¢ ÉÓ ´¥¶·¥·Ò¢´Ò¥ ¶ · ²²¥²Ó´Ò¥ ¢ÒÎ¨¸²¥´¨Ö ¢μ ¢¸¥° μ¡² ¸É¨ §´ -
Î¥´¨° ¢´¥Ï´¥£μ ¶μ²Ö, ¢±²ÕÎ Ö ±·¨É¨Î¥¸±¨¥ ÉμÎ±¨. �  μ¸´μ¢¥ ÔÉ¨Ì ¨¸¸²¥¤μ¢ ´¨° ¶·¥¤² £ ¥É¸Ö
´μ¢μ¥ ¶·¥¤¸É ¢²¥´¨¥ ËÊ´±Í¨° ¸É É¨¸É¨Î¥¸±μ° ¸Ê³³Ò. �´μ, ¢ μÉ²¨Î¨¥ μÉ μ¡ÒÎ´μ£μ μ¶·¥¤¥²¥´¨Ö,
Ö¢²Ö¥É¸Ö ±μ³¶²¥±¸´μ° ËÊ´±Í¨¥°, ¨ ¥¥ ¶·μ¨§¢μ¤´Ò¥ ¢¸Õ¤Ê μ¶·¥¤¥²¥´Ò, ¢ Éμ³ Î¨¸²¥ ¢ ±·¨É¨Î¥¸±¨Ì
ÉμÎ± Ì.

PACS: 71.45.-d; 75.10.Hk; 75.10.Nr; 81.5.Kf

INTRODUCTION

A wide class of phenomena which raise important and difˇcult calculation problems in
physics, chemistry, materials science, biology, nanoscience, evolution, organization dynam-
ics, environmental and social structures, human logic systems, ˇnancial mathematics, etc.,
are mathematically well described in the framework of spin-glass models (see, for exam-
ple, [1Ä10]). In the literature, two types of mean ˇeld models were developed. The ˇrst con-
sists of true random-bond models, where the coupling between interacting spins is assumed to
be independent random variables [11Ä13]. The solution of the model problems is obtained by
n-replica trick [11,13] and requires an invention of sophisticated schemes of replica-symmetry
breaking [13, 14]. In the second type of models the bond-randomness is expressed in terms
of some underlining hidden site-randomness and is thus of superˇcial nature. It has been
pointed out in works [15Ä17], however, that this feature retains an important physical aspect
of true spin glasses, viz. they are random with respect to the positions of magnetic impurities.
Recently it was shown [18, 19] that the critical properties in some type of dielectrics can
be studied by the model of quantum 3D spin glass on the scales of space-time of external
standing electromagnetic ˇelds. As a result, the superlattice of a dielectric constant is formed
in the medium. In particular, it was proved that the initial 3D quantum problem can be
reduced to two conditionally separable 1D problems on space-time scales of an external ˇeld,
where one of the problems describes 1D spin glass with random environment.

We started our investigation with the classical problem concerning the study of statistical
properties of 1D spatial spin-chains (SSCs) ensemble in external ˇelds [20]. Then we investi-
gated the 3D spin-glass problem. We have suggested a new idea which is based on the 3D spin
system consideration as a set (ensemble) consisting of 1D spatial spin chains which randomly
interact with each other (1D SSCs nonideal ensemble). In particular, we have argued that the
model of 1D SSCs nonideal ensemble describes 3D spin glass [22] in the limit of statistical
equilibrium. New high-performance parallel algorithms are developed for both cases. How-
ever, as numerical simulation of spin glass problem shows, critical phenomena can occur even
for weak external ˇelds, which makes the calculation of different thermodynamical potentials
problematic near the mentioned critical points. The solution of this problem is found taking
into account the relaxation effects within the medium under the in	uence of external ˇelds.
In this paper we discuss in detail the statistical properties of classical 1D spin glasses which
suggest that interactions between spins have short-range character and that the system has a
possibility to relax under the in	uence of an external ˇeld. Mathematically, we solve this
problem in the framework of complex-classical Heiseberg Hamiltonian, the meaning of which
is similar to the idea of classical Newtonian mechanics generalization on complex-classical
trajectories [23Ä27].
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In Sec. 1 we formulate problems arising under the generalization of the ClausiusÄMossotti
equation on space-time scales of external ˇelds. It is shown that the problem is mathematically
equivalent to the studying of the statistical properties of a classical ensemble consisting of
one-dimensional chains of spatial spins, where all interactions between spins are random
and the system of spins is under the in	uence of external ˇelds. We obtain the recurrent
equations and Sylvester's conditions for the construction of stable spin chains of a given
length. Deˇnitions of the distribution parameters of the appropriate statistical system are
adduced.

In Sec. 2 the recurrent equations on the nodes of a 1D lattice are analyzed and solutions of
the (i + 1)th angular conˇguration are found depending on the spinÄspin interaction constant
Ji i+1, angular conˇgurations of the previous ith, (i − 1)th spins and constant Ji−1 i. The
developed algorithm for simulation of stable spin chains is generalized by means of extension
of recurrent equations and Sylvester inequalities on a complex region taking into account
relaxation effects occurring in the spin chain on both internal and external degrees of freedom.

In Sec. 3 the pseudo-code of parallel numerical experiments is adduced for simulation of
a 1D SSCs ensemble with the length 25d0. Distributions of the complex energy, polarizations
and spinÄspin interaction constants of relaxing ensemble are investigated in detail.

In Sec. 4 the frustration phenomena of the mean value of ensemble polarization are in-
vestigated in detail depending on the external ˇeld energy parameter. The necessity of mean
values additional averaging for the frustrating parameters of an ensemble is substantiated
on fractal structures. The appropriate formulas are provided for the mean polarization and
EdwardsÄAnderson type orderings parameter of an ensemble. A new kind of complex parti-
tion function is formulated, the different thermodynamic potentials of which have a regular
behavior at critical points.

In the Conclusion, the obtained theoretical and computational results are analyzed in detail.
Further development of the proposed approach is suggested.

1. FORMULATION OF THE PROBLEM AND BASIC FORMULAS

It is well known that in isotropic media (as well as in the crystals with cubic sym-
metry) the dielectric constant εs is well described by the ClausiusÄMossotti equation
(see [28Ä31])

εs − 1
εs + 2

=
4π

3

∑
m

N 0
mα0

m, (1)

where N0
m is the concentration of particles (electrons, atoms, ions, molecules or dipoles)

with given m types of polarizabilities and α0
m are the coefˇcients of polarizabilities, corre-

spondingly. From this equation it follows that the static dielectric constant εs depends on the
polarizability properties of the particles as well as on their topological order. The homogene-
ity and isotropy of the medium are disturbed in external ˇelds. Nevertheless, there is every
reason to expect that formula (1) will be applicable after a minor generalization.
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Taking into account the in	uence of the external electromagnetic ˇelds, the equation for
the dielectric constant formally may be written as

ε
(η)
st (g) =

1 + 2Λη(g)
1 − Λη(g)

, Λη(g) � 4π

3

[∑
m

N 0
mα0

m + �η(g)

]
, (2)

where η = (x, y, z) designates the spatial coordinates.

In (2) the symbol ε
(η)
st (g) designates the dielectric constant depending on the external

ˇeld parameters g = (Ω, h0), where Ω and h0 correspond to the frequency and amplitude
of the external ˇeld; in addition, if the medium can be represented respectively as a model
of disordered spin system (spin glass), then �η(g) designates the coefˇcient of polarizability
which is connected to orientational effects of spins in an external ˇeld. Following from the
general considerations, we can represent the medium as an ensemble of 1D spatial spin chains
(SSCs) of certain length Lx (see Fig. 1). Note that the coefˇcient of polarizability �η(g) is
the mean value of polarization of an ensemble per spin, which should be complex in general
and equal to

�η(g) =
p̄η(g)
Nx

, p̄η(g) =
∫

pηFLx(E,p;g) dE dp, ReE � 0, p = (px, py, pz), (3)

where Nx denotes the number of spins in the chain, E is the energy of a spin chain with the
length Lx and FLx(E,p;g) is the distribution function of 1D spatial spin-chains ensemble
(see deˇnition (11).

Fig. 1. A stable 1D spatial spin chain with random interactions and length Lx = d0Nx, where d0 is

the distance between nearest-neighboring spins. The spherical angles ϕ0 and ψ0 describe the spatial
orientation of S0 spin, the pair of angles (ϕi, ψi) deˇnes the spatial orientation of Si spin

It is obvious that for some value of �η(g) the expression for Λη(g) goes to unit, which
means that a catastrophe occurs in the ClausiusÄMossotti equation (2).

Now, our aim is the calculation of the polarizibility coefˇcient �η(g) with consideration
of relaxation effects occurring in a system of spins under the in	uence of external ˇeld. Note
that in this case the coefˇcient �η(g) will have a complex value and, correspondingly, the
problem of catastrophe will be solved in a natural way (for more details, see Sec. 2).
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We consider a classical ensemble of disordered 1D spatial spin chains (SSC) with the
length Lx, where for simplicity it is supposed that the interactions between spin chains are
absent. The speciˇcity of the problem is such that statistical properties of the system interest
us on very short time intervals δt at which the system cannot be thermally relaxed. Let us note
that for the problem the following time correspondences take place τ � δt < Ω−1 � τT � 1,
where τ is the time of spin relaxation in an external ˇeld and τT is the time of thermal
relaxation. In other words, we suppose that the spin-glass system is frozen and insusceptible
to thermal evolution.

Mathematically, such type of spin glass can be described by the 1D Heisenberg spin-glass
Hamiltonian [1Ä3]:

H(Nx) = −
Nx−1∑
i=0

Ji i+1SiSi+1 −
Nx−1∑
i=0

hiSi, (4)

where Si describes the ith spin which is a unit length vector and has a random orientation,
hi is the external ˇeld which is orientated along the axis x:

hi = h0 cos (kxx i), x i = i · d0, kx = 2π/Lx. (5)

In addition, Ji i+1 characterizes the random interaction constant between i and i + 1 spins
in (4). Ji i+1 can have positive as well as negative values (see [1, 4]).

For further investigations, (4) is convenient to write in spherical coordinates (see Fig. 1):

H(Nx) = −
Nx−1∑
i=0

{Ji i+1[cosψi+1 cos (ϕi − ϕi+1) + tanψi sinψi+1] +

+ h0 cos (2πi/Nx) tanψi} cosψi. (6)

Equations (6) for the stationary points of the Hamiltonian will play a central role in the
consecutive calculations of the problem:

∂H

∂ψi
= 0,

∂H

∂ϕi
= 0, (7)

where Θi = (ψi, ϕi) are the angles of the ith spin in the spherical coordinates (ψi is the polar
and ϕi the azimuthal angle).

Using expression (4) and equations (7), it is easy to ˇnd the following system of trigono-
metric equations:

i+1∑
ν=i−1;ν �=i

Jνi[sin ψν − tanψi cosψν cos(ϕi − ϕν)] + hi = 0,

(8)
i+1∑

ν=i−1;ν �=i

Jνi cosψν sin (ϕi − ϕν) = 0, Jνi ≡ Jiν .

If the interaction constants between the ith spin with its nearest-neighboring spins Ji−1 i,
Ji i+1, as well as the angles (ψi−1, ϕi−1), (ψi, ϕi), are known, it is possible to explicitly
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calculate the pair of angles (ψi+1, ϕi+1). Correspondingly, the ith spin will be in the ground
state (in the state of minimum energy) if the following conditions are satisˇed (Sylvester
conditions) at the stationary point Θ0

i = (ψ0
i , ϕ0

i ):

Aψiψi(Θ
0
i ) > 0, Aψiψi(Θ

0
i )Aϕiϕi(Θ

0
i ) − A2

ψi ϕi
(Θ0

i ) > 0, (9)

where Aαiαi(Θ0
i ) = ∂2H0/∂α2

i , Aαiβi(Θ0
i ) = Aβiαi(Θ0

i ) = ∂2H0/∂αi∂βi, in addition:

Aψiψi(Θ
0
i ) =

{
i+1∑

ν=i−1;ν �=i

Jνi[cosψν cos (ϕν − ϕ0
i ) + tanψ0

i sin ψν ] +

+ h0 cos (2πi/Nx) tan ψ0
i

}
cosψ0

i , Aψiϕi(Θ
0
i ) = 0,

Aϕiϕi(Θ
0
i ) =

i+1∑
ν=i−1;ν �=i

Jνi cosψν cos (ϕν − ϕ0
i ) cosψ0

i . (10)

With the help of equations (8) and conditions (9), (10) we can calculate a huge number of
stable 1D SSCs, which will allow us to investigate the statistical properties of the 1D SSCs
ensemble. It is supposed that the average polarization (magnetization) of the 1D SSCs
ensemble (polarizability of 1D SSC) is equal to zero in the absence of an external ˇeld.

Now we can construct the distribution function of the energy of the 1D SCCs ensemble
subject to the external in	uence. To this aim it is useful to divide the dimensionless real
energy axis E into the regions 0 > E0 > . . . > En and the polarization axis p into the regions
(0 > p0;x > . . . > pn;x), (0 > p0;y > . . . > pn;y) and 0 > p0;z > . . . > pn;z, where n � 1.
The number of stable 1D SSC conˇgurations with the length Lx within the energy range
[E− δE, E + δE], δE � 1, and polarizations range [px − δpx, px + δpx], [py − δpy, py + δpy]
and [pz − δpz, pz + δpz] will be denoted by MLx(E,p;g), while the number of all stable

1D SSC conˇgurations by the symbol M full
Lx

=
n∑

i,j,l,k=1

MLx(Ei, pj;x, pl;y, pk;z). Accordingly,

the energy distribution function for the ensemble may be deˇned by the expressions:

FLx(E,p;g) = MLx(E,p;g)/M full
Lx

,
(11)

lim
n→∞

n∑
i, j, l, k=1

FLx(Ei, pj;x, pl;y, pk;z)δεiδpj;xδpl;yδpk;z =

0∫
−∞

dE

∫
FLx(E,p;g)dp = 1,

where the second one expresses the normalization condition of the distribution function to
unity. Recall that the energy E and polarization p in general can be complex quantities and
accordingly integrations on these values must be understood as multidimensional integrations.

2. SIMULATION ALGORITHM

2.1. Spin Glass without Consideration of Relaxation Effects of the 1D SSCs Ensemble.
Using the following notation:

ξi+1 = cosψi+1, ηi+1 = sin (ϕi − ϕi+1), (12)



A New Parallel Algorithm for Simulation of Spin Glasses on Scales of Space-Time Periods 865

system of equations (8) can be transformed into the following form:

C1 + Jii+1

[√
1 − ξ 2

i+1 − tanψiξi+1

√
1 − η 2

i+1

]
= 0,

(13)
C2 + Jii+1ξi+1ηi+1 = 0,

where parameters C1 and C2 are deˇned by the expressions

C1 = Ji−1i[sin ψi−1 − tan ψi cosψi−1 cos (ϕi − ϕi−1)] + h0 cos (2πi/Nx) cosψi,

C2 = Ji−1i cosψi−1 sin (ϕi − ϕi−1).

From system (13) we can ˇnd the equation for the unknown variable ηi+1:

C1ηi+1 + C2

√
1 − η2

i+1 tan ψi +
√

J2
ii+1η

2
i+1 − C2

2 = 0. (14)

We can transform equation (14) to the following equation of fourth order:

(A2 + 4C2
1C2

2 sinψi)η4
i+1 − 2(AC2

2 + 2C1C
2
2 sin2 ψi)η2

i+1 + C4
2 = 0, (15)

where
A = J2

ii+1 cos2 ψi − C2
1 + C2

2 sin2 ψi. (16)

The discriminant of equation (15) is equal to

D = C4
2 (A+2C1 sin2 ψi)2−C4

2 (A2+4C2
1C2

2 sin2 ψi) = 4C4
2C2

1 sin2 ψi(A+C2
1 sin2 ψi−C2

2 ).

From the condition of nonnegativity of the discriminant D � 0 we get

A + C2
1 sin2 ψi − C2

2 � 0. (17)

Substituting the value of A from (16) into (17), we can ˇnd a new condition to be satisˇed
by the interaction constant between two successive spins:

J2
ii+1 � C2

1 + C2
2 . (18)

Now we can write the following expressions for unknown variables ξi+1 and ηi+1:

ξ2
i+1 =

C2
2

J2
ii+1η

2
i+1

, η2
i+1 = C2

2

A

B
, (19)

where

A = J2
ii+1 cos2 ψi + C3 + 2C1 sin2 ψi

[
C1 ±

√
J2

ii+1 − C2
1 − C2

2 cotψi

]
,

B = J4
ii+1 cos4 ψi + 2C3J

2
ii+1 cos2 ψi + (C2

1 + C2
2 sin2 ψi)2, C3 = −C2

1 + C2
2 sin2 ψi.

Finally, in consideration of (12) for calculating the angles (ϕi+1, ψi+1) we ˇnd

0 � ξ2
i+1 � 1, 0 � η2

i+1 � 1. (20)

These conditions are very important for elaborating a correct and effective simulation algo-
rithm (see also [20]).
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2.2. Spin Glass with Consideration of Relaxation Effects in the 1D SSCs Ensemble.
As was shown by the numerical simulation, the algorithm described in the previous section
allows very fast and correct parallel simulation of the spin glass problem [20]. In particular,
we have shown that even for weak external ˇelds there arise such values of polarization which
lead to catastrophe in equation (2). In order to solve this issue, it is necessary to consider
occurring relaxation effects in 1D SSCs ensemble under the in	uence of an external ˇeld.
Mathematically, the consideration of a complex Hamiltonian can be one of the effective ways
to solve the above-mentioned problem. Note that the idea of complex Hamiltonian is often
used for solution of classical and semiclassical problems near zero scattering angles [21].
In the speciˇed cases the divergence problems are successfully solved by using the so-called
complex-classical trajectories. We consider that spin chains as a matter of fact are classical
trajectories where the analogue of time is the sequence of nodes. It is obvious that in a
complex-classical trajectory (spin chain) it is possible to take into account the relaxation
effects in the spin system.

We thus propose that Hamiltonian (4) is a complex function where the constants Jii+1 and
angles between spins have complex values. One might expect that such a Hamiltonian will
describe the relaxation of the spins inside the chain (excitation of external degrees of freedom)
and, correspondingly, the excitation of internal degrees of freedom due to which the absolute
values of spins can be changed. Mathematically, such kind of extension of the problem is
equivalent to the analytic continuation of the classical solution in the complex region. In other
words, we must extend equations (19) and inequalities (9) and (18) by considering them as
complex.

The system of recurrent equations which will allow one to calculate spin chains with
consideration of relaxation effects can be written in the following form:

Re
{

ξ̃ 2
i+1 − C̃ 2

2 J̃− 2
i i+1η̃

− 2
i+1

}
= 0,

Im
{

ξ̃ 2
i+1 − C̃ 2

2 J̃− 2
i i+1η̃

− 2
i+1

}
= 0,

Re
{

η̃ 2
i+1 − C̃ 2

2 Ã B̃−1
}

= 0,

Im
{

η̃ 2
i+1 − C̃ 2

2 Ã B̃−1
}

= 0, (21)

Im
{

Ã ψ̃i+1 ψ̃i+1
(Θ̃i+1)

}
= 0,

Im
{
Ã ϕ̃i+1 ϕ̃i+1 (Θ̃i+1)

}
= 0,

Im
{
J̃ 2

i i+1 − C̃ 2
1 − C̃2

2

}
= 0.

The tildas over the symbols designate the analytic extension of the functions in the complex
region: σ̃ = σr + iσi, where σr and σi are the real and imaginary parts of the function,
correspondingly. Note that the ˇrst four equations in (21) are found from the complex
extension of equations (19) by separating the real and imaginary parts. The next three
equations are found from the zeroing condition of imaginary parts of Sylvester conditions (9)
and inequality (18).

The condition of local minimum energy for spins requires to satisfy the following
inequalities:

Re
{
Ãψ̃i ψ̃i

(Θ̃0
i )

}
> 0, Re

{
Ãϕ̃i ϕ̃i(Θ̃

0
i )

}
> 0, (22)
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and the additional condition (see also condition (18)):

Re
{
J̃2

i i+1 − C̃2
1 − C̃2

2

}
� 0. (23)

System (21) with the constraints conditions of inequalities (22) and (23) allows one to conduct
computation and construct stable spin chains with consideration of relaxation effects which
occur as a result of energy exchange between spins inside the chain and excitation of their
internal degrees of freedom.

Simulation of (21) with consideration of conditions (22), (23) can be realized under various
scenarios. In particular, if we assume that relaxation occurs only between the spins in chains
without excitation of internal degrees of freedom, then a new additional condition arises
(see also (20)): ∣∣ ξ̃ 2

i+1

∣∣ � 1,
∣∣ η̃ 2

i+1

∣∣ � 1. (24)

Conditions (24) are equivalent to the assumption that the interaction constants Jii+1 are only
complex. When the relaxation goes on two degrees of freedom, then the conditions (24) are
not satisˇed.

3. NUMERICAL EXPERIMENTS

In this section we discuss the case when relaxation occurs by the above-mentioned two
degrees of freedom.

We assume that the ensemble consists of M spin chains, each of them of length 25d0. For
the realization of simulation we use a parallel algorithm the scheme of which is represented
in [20,32].

Brie	y random M sets of initial parameters (the angular conˇgurations of ˇrst and sec-
ond spins of each chain in the ensemble and interaction constants between those spins) are
generated as complex values {Ω1, Ω2, . . . , Ωn = (Θ̃0, Θ̃1, J̃01)n, . . . , ΩM}. The MAPLE tool
for symbolic calculations of system (21) allows the separation of the real and imaginary parts
of the complex equations. When the solutions of the recurrence equations are found, the
conditions of stability of the spins at each node are being checked. The process of simulation
proceeds at the following node if the conditions (22) are satisˇed. If conditions (22) are not
satisˇed, a new constant Jiı+1 is randomly generated and, correspondingly, new solutions
are found and constraints (22) are being checked. It is important to note that starting from
the spin-chain second node the spinÄspin interaction constants Jii+1 are generated taking into
account inequality (23). This cycle is being repeated at each node until the solutions do satisfy
the conditions for the local energy minimum. The process of computation is continued up to
the Nxth node. The algorithm works until the simulation of all M parallel problems ends.

At ˇrst we conducted numerical simulation for the deˇnition of different statistical para-
meters of an ensemble which consists of 3·103 spin chains with the length 25d0 in the absence
of external ˇelds (the case of unperturbed Hamiltonian). The simulations showed that the
distribution of the real part of the energy has a global maximum in the negative region, while
its imaginary part is symmetrically distributed around zero (Fig. 2, a). The mean values of the

real and imaginary parts of the energy are, correspondingly, equal to E
(r)
0 = −1.0549 and

E
(i)
0 = 0.00014. The small value of the imaginary part of the energy is understandable. There

should not be relaxation in the absence of the external ˇeld in the ensemble and, respectively,
the imaginary part of the energy must be zero. An important result is the calculation of
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Fig. 2. a) The distribution of the energy (for the real and imaginary parts, correspondingly) of an

ensemble, which consists of 1D SSCs, each of them being of length Lx = 25d0. b) The distribution
of constants of spinÄspin interactions (for the real and imaginary parts, correspondingly). These distri-

butions essentially differ from the GaussÄEdwardsÄAnderson distribution and correspond to the L
evy

alpha-stable distributions class

Fig. 3. a) Distributions of the real part of polarizations on the coordinates x, y, z. b) Distributions of

the imaginary part of polarizations on the coordinates x, y, z

spin-spin interaction constants from ˇrst principles of classical mechanics. As calculations
show, the distributions of the real and imaginary parts are not normal (Fig. 2, b). They satisfy
the L
evy alpha-stable distribution class [33].

For the spin glass problem an important issue is the calculation of the spins magnetization
(throughout the text also called polarization). As was numerically shown, the distributions
of both real and imaginary parts of polarizations are symmetric in weak external ˇelds γ

(deˇned by the expression γ = h0/|E(r)
0 | = 2 · 10−3), which means that the system is ergodic

(see Figs.3, a, b). Recall that for the considered case we have the following results for the mean

values of 1D SSCs' polarizations: (p̄(r)
x = 0.14921, p̄

(r)
y = −0.45993, p̄

(r)
z = 1.0893) and for

the imaginary part of polarization, correspondingly: (p̄(i)
x = 0.29102, p̄

(i)
y = −0.39594, p̄

(i)
z =

0.067269).
Such values of polarizations are possible if the absolute values are greater than the num-

ber 25 on all coordinates (Fig. 3, a). Recall that in the absence of external ˇeld the spin mag-
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nitudes are equal to unity and, correspondingly, the maximal absolute value of the 1D SSC
polarization is less than 25. The latter means that both the internal and external degrees of
freedom of the spin system are excited under relaxation in the external ˇeld.

4. STATISTICAL PROPERTIES OF 1D SSCs ENSEMBLE IN EXTERNAL FIELD

The most interesting and important questions about statistical systems concern their critical
behaviors in external ˇelds. In this sense, the behavior of spin-chains ensemble magnetization
(the mean value of polarizability) in the external ˇeld is very important parameter.

We have investigated the behavior of the ensemble polarization average value depending
on the external ˇeld. Using deˇnition (3), we have calculated the mean values of polarizations

p̄
(o)
η (γ) on all coordinates (η = x, y, z), where the index (o = r, i) designates the real and

imaginary parts.
The numerical simulation has shown that the mean values of both the real and imaginary

parts of the polarizations are strongly frustrated [35] depending on the parameter γ. This
frustration does not disappear at grid convergence of computation region, see Figs. 4, a, b, c
(real part) and, correspondingly, Figs. 4, d, e, f (imaginary part). Moreover, at each separation
the self-similarity of structure is conserved, which testiˇes to its fractal character. The
dimensionality of fractal structure is calculated by the following simple formula:

D(o)
η (γ) = ln (n)/ ln (N), (25)

where n is the number of partitions of the structure size, and N is the number of placing

of the initial structure. At the value γ = 0.003 the dimensionality D
(r)
x ≈ 1.2095. Similar

calculations can be done for D
(r)
y , D

(r)
z , etc. At increasing γ, all of them tend to unity.

Taking into account the above-mentioned results, the average value of polarization (mag-
netization) is to be from

〈p̄(o)
η (γ)〉 � 1

n

n∑
i=1

p̄(o)
η (γi), (26)

where n stands for the number of points at which the average value of polarization p̄
(o)
η (γi)

(averaged over the ensemble of 1D SSCs, see equation (3)) has an extremal value, in addition
γi ∈ [γ − δγ, γ + δγ], δγ � 1, and the angle brackets 〈 . 〉 denote fractal averaging, i.e., the

arithmetic mean. As it follows from Figs. 5, a, b, the mean value of polarization 〈p̄(o)
η (γ)〉 has

a set of phase transitions of ˇrst order depending on γ after averaging on fractals.
Now we can deˇne the EdwardsÄAnderson type ordering parameter, which characterizes

the process of orderings in the system depending on the external in	uence. As is seen from the
visualization of commutated evidence (Figs. 6, aÄf), a similar pattern follows for the ordering
parameters. The mean values of the square of polarizations on the ensemble are strongly
frustrated and depend on the external ˇeld (Figs. 6, aÄf):

[p(o)
η (γi)]2 =

∫
[p(o)

η ]2FLx(E,p;g)dE dp, Re E � 0,

where E and p correspondingly denote energy and polarization of 1D SSC, which have

complex values, in addition dE = dE(r)dE(i) and dp = dp
(r)
x dp

(r)
y dp

(r)
z dp

(i)
x dp

(i)
y dp

(i)
z .
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Fig. 4. a, b, c) Self-similar curves of the real part of polarization. d, e, f) Self-similar curves of the

imaginary part of polarization. The x, y, z mean values of both the real and imaginary parts of the
polarization are strongly frustrated on all coordinates depending on the external ˇeld

The expression [p(o)
η (γi)]2 should be averaged on fractal structures like (26):

g(o)
η (γ) � 1

n

n∑
i=1

[p(o)
η (γi)]2. (27)
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Fig. 5. a) Curves of the real part of polarizations on different coordinates (x, y, z) after averaging

on the spin-chains ensemble and fractal structures. The usual ClausiusÄMossotti equation (2) (without
consideration of relaxation effects) has a catastrophe (plot a) for two values of external ˇeld (γ0, γ1).

b) Curves of the imaginary part of polarizations after full averaging by the spin-chains ensemble and
fractal structures

As calculations have shown, an ordering occurs in the system depending on the increase of γ
(Figs. 7, a, b).

It is important to note that in the system critical phenomena may occur connected with
catastrophes in the ClausiusÄMossotti equation (2) (Fig. 5, a) when the real part of denominator
in the equation tends to one. The analysis of a large class of spin glasses shows that
catastrophes occur when the real part of polarizability coefˇcient connected with orientational
effects varies between �η(γ) ∝ 0.025−0.05 and the contribution coming from relaxation
effects is not considered in equation (2).

These problems are solved by consideration of relaxation effects which lead to formation
of the imaginary part in the polarizability coefˇcient, which fully eliminates the divergence
in equation (2) (see Fig. 5, b). As is seen from Figs. 4 and 6, the above-mentioned parameters
are frustrated in other directions, also where the external ˇeld is applied.

Finally, we return to the deˇnition of the main object of statistical physics, which is the
partition function. As is well known, the partition function of a classical many-particle system
is deˇned in the conˇguration space as follows [36]:

Z(β) =
∫

exp
{
−βH({r})

}
dr1 dr2 . . . , β =

1
kBT

, (28)

where H({r}) describes Hamiltonian of spins system in the direct lattice, kB is the Boltzmann
constant and T is the thermodynamic temperature. If the number of spins or spin chains in
the system is large, the quantity (28) is a functional integral. Anyway, the number of
integrals in expression (28) is very large as a rule and the main problem lies in their correct
calculation. However, in representation (28) conˇgurations of spin chains which are not
physically realizable do obviously contribute. Moreover, the weight of these conˇgurations
is not known in general and it is unclear how to deˇne it. With this in mind and also taking
into account the ergodicity of the spin glass in the above-mentioned sense, we can deˇne the
partition function in the space of the energy and polarization (E,p) of superspin in the form

Z∗(β; Nx) =

〈∫
exp

{
βH(E,p)

}
F (E,p;g, Nx) dE dp

〉
, Re E � 0, (29)
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Fig. 6. Self-similar curves of the EdwardsÄAnderson ordering parameter on different coordinates. The

curves (a, b, c) correspond to the real part of the ordering parameter, while the curves (d, e, f) correspond
to its imaginary part. The (x, y, z) mean values of both the real and imaginary parts of the polarization

are strongly frustrated on all coordinates and depend on the external ˇeld

where H(E,p) describes Hamiltonian of spins system in a space (E,p), in addition 〈. . .〉,
correspondingly, designate the averaging by fractal structures like deˇnition (26).
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Fig. 7. a) Curves of the real part of ordering parameters on different coordinates (x, y, z) after averaging

on the spin-chains ensemble and on the fractal structures. As is obvious, at increasing of γ parameter
(energy of the external ˇeld) the system goes to ordering. b) Properties of the imaginary part of the

ordering parameter

Thus, according to the new deˇnition, the partition function is a complex function and its
derivatives have regular behaviors respectively at the critical points.

CONCLUSION

In order to solve the problem of critical phenomena in spin glasses under external ˇelds,
we ˇrst examined the possibility of its description in the framework of complex Hamiltonian.
We have studied a short-range interaction model of the spin glass which consists of 1D SSCs.
We use the condition of stationarity point of the Hamiltonian on the nodes which allows us
to ˇnd a system of recurrent equations (7) or (8) based on the fact that stable spin chains are
essentially classical trajectories, where the role of time in the context of this problem is the
sequence of nodes. These equations together with Sylvester conditions (9) allow step-by-step
construction of stable spin chains as classical trajectories. The generalization of classical
trajectories on the complex classical trajectories leads to a system of equations (21) which
satisfy inequalities (22), (23). The solutions of equations (22), (23) for both angles and
spinÄspin coupling constants are complex since all parameters of the problem are complex.
As a result, it helps to avoid the catastrophe in equation (2) and build up a reliable numerical
algorithm for solving the spin glass problem taking into account relaxation effects. The
developed approach allows us to generalize the ClausiusÄMossotti equation and makes it
suitable for qualitative and quantitative study of the dielectric constant's behavior of medium
including the cases where critical phenomena occur in the medium.

Also, it is important to note that the presented approach allows us to construct a new more
correct partition function (29), which is a complex function and its derivatives do not diverge
at the critical points.

Finally, we note that the developed approach allows us to efˇciently run the parallel
algorithm for the numerical simulation of the considered problem on small (about 20Ä24)
multiprocessor systems. It is a good result since large supercomputers were used before for
the simulation of this class of problems.

Acknowledgements. The authors thank Profs. G.Adam and V.Gerdt for very helpful
discussions.
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