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BEAM STABILITY IN SYNCHROTRONS
WITH DIGITAL TRANSVERSE FEEDBACK SYSTEMS

IN DEPENDENCE ON BEAM TUNES
V. M. Zhabitsky

Joint Institute for Nuclear Research, Dubna

The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is
studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to
its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It
is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the
feedback gain, the phase balance between the phase advance from BPM to DK and the phase response
of the feedback chain at the betatron frequency.

IIpuBoasTCS Pe3ysabT THI UCCIENOB HUS YCTOHYMBOCTH MYYK B CHHXPOTPOH X C CHCTEMOM IOX Bie-
Hus (CII) KorepeHTHBIX MONepeyHbIX Kone® HHUil B 3 BUCHMOCTH OT 4 CTOTHI O€T TPOHHBIX Kone® Huil.
CII obecrieunB €T KOPPEKLHUIO MOINEPEYHOrO UMITYJIbC CIYCTKOB H K KIOM 000pOTe C MOMOLIBIO Jie-
¢extop IK c yuetoMm A HHBIX O CMEIIEHHH LEHTP TSKECTU MyYK , M3MEPEHHBIX JI TIUKOM MOTOXKEHUS
HI1. TIok 3 HO, YTO IWJIOLI b U KOHC(HUIYP LU Cell p TPUCHI LI CT OMIBHOTO My4K 3 BHCST OT U -
CTOTHI O€T TPOHHBIX Koyieb Huid, KO3p(UIMEHT mepen Y Lenu obp THOH cBi3W, 6 1 HC ¢ 3 MexXay
H GeroMm ¢ 3bI 6er TponHbIX Kone® Huit ot JI1 mo K u caBurom ¢ 3bI COOTBETCTBYIOIIETO CUTH J1 B
Henu o0p THOH CBSA3H.

PACS: 29.20.Lq; 29.27.Bd

INTRODUCTION

A classical transverse feedback system (TFS) in synchrotrons consists of a beam position
monitor (BPM), a damper kicker (DK), and an electronic feedback path with an appropriate
signal transmission from BPM to DK [1,2]. The damper kicker corrects the transverse
momentum of a bunch in proportion to its displacement from the closed orbit measured at
the BPM location. The total delay Tqelay in the signal processing of the feedback loop from
BPM to DK is adjusted to be equal to 7pk, the particle time of the flight from BPM to DK,
plus an additional delay of ¢ turns:

Tdelay — TPK + (jTrevv (D

where T, is the revolution period of a particle. BPM and DK are located at the fixed
positions in the synchrotron. The particle betatron phase advance from BPM to DK and the
phase response of the feedback loop to the corresponding beam signal should be adjusted
for damping of particle oscillations. These both phases depend on the beam tune that is a
tuneable parameter in synchrotrons. Beam stability conditions in dependence on the beam
tune are studied below.
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BASIC NOTIONS

Following the matrix description of the free oscillation of a particle in synchrotrons, the
matrix equation for its states at the BPM location sp at the (n+ 1) and nth turns after a small
kick by the DK is given by [3,4]

)?[’I’L +1, Sp] = )?[n, sp + C()] = M\O )?[n, Sp] + B\A)/(:K[n, SK], 2)

where elements of the column matrix X|[n, s] are the particle displacement x[n, s] and the
angle z'[n, s] of its trajectory, My is the revolution matrix, B is a transfer matrix from the
point [n, sk] on the closed orbit at the DK location to the point [n, sp + Cp] at the BPM
position at the nth turn, Cp is the synchrotron’s circumference. The first element of column
matrix AXk|[n, sk] is zero, but the second one equals the kick value Az'[n, sk|. Let the kick
be in proportion to the particle displacement at the BPM location at the same turn:

g
\/ B Bp
where g is a feedback gain, Bs = B(s) is the betatron amplitude function at the point s.
Substituting (3) into (2), one can obtain the difference equation in a matrix form:

Az'[n, sk| = z[n, sp|, (3)

~ —~ o~ — — g

X[n+1,sp] = M X|[n, sp|, M = My + Ef, 4)

where T is 2 x 2 matrix in which T51 = 1 and the other elements are zero. Consequently, the
particle dynamics is determined by roots zj of the characteristic equation:

det (z,] — M) = 22 — [2cos (27Q) + gsin (27Q — pk)] zx + 1 — gsinypx =0,  (5)

where T is the identity matrix, () is the beam tune, pk is the betatron oscillation phase
advance from BPM to DK. The particle motion is stable if |z;| < 1 so that the damping rate
is Dy = —In |zg| and the fractional number of oscillations per turn is {Q} = arg (z;)/27.

Two eigenvalues z; and zo of the quadratic equation (5) depend on g, @ and ¥pk (Q). Let
Qo be the tune on the reference closed orbit in the synchrotron for particles with momentum
po. The tune of injected particles with momentum pg + dp deviates from Qg so that the phase
advance ¥pk (Q) for the tune Q = Qo + 0Q is as follows:

ok (Q) = bk (Qo + Q) — (1 i g%) bo(Qo).

Let us define the rate D for the maximal absolute value of zj:
D = —In (MAX|zg|) . 6)
In the case of under-damping oscillations one can write for Eq. (5) with real coefficients:

1 — gsinypk(Q) = 2122 = exp (—2D). (N
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In the case of over-damping oscillations the rate D corresponds to the slowest exponential
decay of oscillations. Hence, one can obtain two numbers of the gain for the fixed tune @) with
the same rate D. The three-dimensional representation of beam stability data set D (g, Q— Qo)
and its contours for fixed dampimg rates D,,:

Dy = 0.002, D,, = n./80, 1<n. <8 8)

are shown in Fig. 1 in the case of Q9 = 59.31 and ¥pk(Qo) = 27 x 59.25. The contour
line for the damping time 7 = T}/ D that corresponds to Dy is chosen for damping regime
T < Tgec Where the assumed decoherence time Tqeoe > 500 T};ey. Therefore, the closed curve
for Dy can be considered as the beam stability separatix. It separates the (g, Q)) space
into two distinct areas. The particle motion within the separatrix corresponds to the damped
oscillations, whereas the outside of the separatrix corresponds to non-damped oscillations. For
example, the damping time 7 < 10 T}, corresponds to the internal area of the closed curve
with n. = 8 (the smallest area in Fig. 1, b), where |0Q)| < 0.14 for gain g = 0.3. It should be
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Fig. 1. Beam stability surface (a) and contour (b) plots

emphasized that in accordance with Eqs. (5) and (7) the separatrix is limited by the fractional
part of the tune {Q} = 0.5 and 0Q > —0.25 for {Qo} > 0.25 (or {Q} = 0 and 6Q < 0.25
for {Qo} < 0.25), and the Q) size is maximum in the case of |sin¢¥pk(Qo)| = 1.

DIGITAL TFS

In general, the kick value depends on the bunch displacement at the BPM location ac-
cording to the structural scheme of electronics in the feedback loop. For linear time invariant
feedback systems one can write

n—q
9% _ ufn—q)' . hlm]aln — G —m,sp], ©)

\/ BKBP m=0

where u[n] is the Heaviside step function, elements ag and hlm| are determined by the
feedback electronics, ¢ is the number of turns for the delay (see Eq.(1)). Following the

Az'[n, sk] =



566 Zhabitsky V. M.

approach [3-5] for solving Egs.(2) and (9) by using Z-transform, one can obtain that the
particle dynamics is determined by roots zj of the characteristic equation:

22 — |2 cos (27Q) + gao zk_éH(zk) sin (27 Q — ¢PK):| zi+1—gag zk_éH(zk) sinypg = 0,

(10)
where the transfer function H(z) is determined by parameters h[m| in (9) and ag is defined
for zg = exp (j27 Qo) at the reference orbit such that

laozg "H(z0)| =1,  apsin (wpK(QO) _ arg (zo‘@ H(zo))) > 0. (11)

If g = 0, then the solutions zij ) = exp (527 Q) of Eq.(10) correspond to the solutions for
frequencies of the betatron motion equation of a particle in synchrotrons. If the fractional
part of the tune {Q} is not close to 0 or 0.5 [5,6], then the solutions of Eq.(10) in the linear
approximation with g < 1 are expressed by the following formula:

Z4 A exXp (— gsgn (ap) sin \I/pK) exp (:I:j 21Q F j g sgn (ag) cos \IlpK) , (12)
where the sgn (ag) function is an odd mathematical function that extracts the sign of ag and

Upk = 1hpg — arg (zéq H(zQ)) . 2q =exp(j27Q). (13)

Hence, the best damping of transverse oscillations is achieved by optimal choosing of the BPM
and DK positions and the phase response of feedback electronics at the betatron frequency
that provides a phase advance of ¥pxk equal to an odd number multiplied by 7/2.

To simplify further explanations, one can assume that TFS has no additional delay (§ = 0)
so that Upk depends on the tune @) via ¥pk and arg H.

Properties of H(z) are determined by the feedback electronics. If the kick depends on the
displacement in accordance with (3), then H(z) = 1 (the so-called ideal feedback loop). The
transfer function for TFS with the notch and Hilbert filters [7] is as follows:

Hl(z) = HN(Z) HHF(Z) = (1 — Z_l) (hoz_3 + h1Z_2(1 - 2_2) + hg(l - 2_6)) 5 (14)

where 9 5
ho =cos(Ap), hy=—=sin(Ayp), hs=-—sin(Ay).
7r 3

H(z) for TFS with the notch filter and the FIR filter of the first order [5] is
Hy(z) = Hy(2) Hpr(2) = (1= 27") (1 4+ a227") . (15)

The magnitude G(Q) = |aog H(z¢)| and phase response ®((Q)) = arg H (zq) graphs against
the fractional part of the tune {Q} are shown in Fig. 2 for filters with transfer functions H;(z)
and Hz(z) at Qo = 59.31, Ap = —59.33° and az = 0.576 so that G(Qp) = 1 and ®(Q)p) = 0.
One can note for the interval of |Q — Qo| < 0.1 that the deviations |®(Q) — ®(Qo)| < 130°
for the notch and Hilbert filters considerably exceed the betatron phase advance deviations
27|@Q — Qo| < 36° comparable with the deviations |®(Q) — ®(Qo)| < 25° for the notch filter
and the FIR filter of the first order.
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Fig. 2. The magnitude G(Q) and phase response ®(Q) graphs for the notch and Hilbert filters (solid)
and for the notch filter and the FIR filter of the first order (dashed)
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Fig. 3. Damping rate contours for TFS with transfer functions H1(z) and H2(z)

Damping rate contours D = — In (MAX]|z|) for TFS with transfer functions H;(z) and
Hj(z) are shown in Fig.3 in the case of D,, from (8) and ¢pk(Qo) = 27 x 59.25. The
best damping is achieved for small gains at |sin Upk(Qo)| = 1 in agreement with Egs. (13)
and (12) due to values of Ay = —59.33° and as = 0.576.

One can note that in the case of the notch and Hilbert filters the damping time 7 < 10 T}y
corresponds to the internal area of the closed curve with n. = 8 (the smallest area in Fig. 3, a)
where 0 < 6Q) < 0.02 for gain g = 0.15. The damping time 7 = 40T}, corresponds to
the closed curve with n. = 2 (the third curve in Fig. 3, a) where —0.022 < 6@ < 0.035 for
gain g = 0.1. On the other hand, in the case of the notch filter and the FIR filter of the first
order, the damping time 7 < 1075, corresponds to the internal area of the closed curve with
n. = 8 (the smallest area in Fig.3,b) where |6Q)| < 0.065 for gain g = 0.3. Hence, the area
of separatrix in the case of Hj(z) is much less than the same area for Hs(z), which, in its
turn, is less than the separatrix area for H(z) =1 (see Fig. 1,b).

It should be emphasized that the phase advance Wpk(Qp) can be matched to optimal
magnitude by choosing the digital filter parameters according to the phase advance ¥pk (Qo).
For example, if ¥pk(Qo) = 27 x 59.092 at Qo = 59.31, then |sin Ypk(Qo)| = 1 can be
achieved for Ap = —116.4° or as = 2.86 (see Fig.4,a). One can see that there is no beam
stability for TFS with the notch filter (Hy(z) = 1 — 27!) for these numbers of ¥px(Qo)
and QQg. Damping times for the ideal feedback loop (H(z) = 1, but |sinpk| < 1) is much
bigger than the same values in the case of H;(z) and Hz(z) for g < 0.25. Damping rate
contours for TFS with H;(z) and Hz(z) at Ap = —116.4° and az = 2.86 look like the
contours in Fig.3. However, D, -contours and damping rates depend on A¢. For example,
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Fig. 4. Dependences of Tiev /7 on gain g for H(z) = 1 (dash-dotted), Hy (z) (dotted), H1(z) (solid),
H>(z) (dashed) in the panel a and for TFS with Hi(z) at Ap = —116.4° (solid), Ap = —76.4°
(dashed), Ay = —156.4° (dotted) in the panel b

if Ap = —(116.4 & 40)°, then the damping rates are less than those at Ap = —116.4° (see
Fig.4,b). This dynamic behavior can be used for tuning and optimisation of the transverse
feedback loop parameters.
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