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INTRODUCTION

Lattice ˇeld theory, the most successful nonperturbative, regularized treatment of contin-
uum ˇeld theory, has accomplished in the last three decades a lot: equilibrium calculations of
ground-state (vacuum) properties, spectra of low-excited states (hadrons) and phase transitions
at ˇnite temperature are most widely known achievements in understanding of the strong and
electroweak interaction. Recent developments in computational techniques (fat link actions,
complex pole techniques, fast numerical inversions including pseudoinverse methods, chiral
symmetric fermion actions and reweighting of conˇgurations) demonstrate that this ˇeld is
still developing, aimed towards physical situations which were not feasible for numerical
studies in the past. Equilibrium calculations at ˇnite baryochemical potential, reˇned equa-
tions of state (pressure and energy density) information, realistically low quark masses, decay
properties of hadronic resonances, an increasing knowledge on the nature of deconˇnement
phase transition and close-ups on topologically nontrivial ˇeld conˇgurations circumline a
picture of very rich physics due to the numerical study of quantum ˇelds [1Ä11].

Unfortunately, the space of all possible ˇeld conˇgurations constituting a path integral
included in the calculation of any quantum expectation value is so enormous, exponen-
tially growing with the number of considered space-time points, that it is hopeless to sum
all contributions with the proper complex weight factors, exp (iS) with a given action S.
For equilibrium situations the canonical ensemble technique formally treats the time as pure
imaginary, resulting in exponentially suppressing factors, exp (−SE), for most of the conˇg-
urations. Corresponding algorithms, summing the path integral with Monte Carlo methods,
can then be utilized for calculations. Out of equilibrium this fortunate circumstance is no
more established.

There can be, however, another way to surpass the traditional canonical paradigm. Some,
even very drastically nonequilibrium dynamics may lead to a stationary repetition (or cascad-
ing) of self-similar physical situations which leave their imprint on experimental observations
as there were a non-Gibbs-like distribution of different energy states in the background. On
the other hand, the equilibrium itself is not necessarily an element of a canonical Gibbs
ensemble. As was recently pointed out [12], a single degree of freedom under the in�uence
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of a stochastic force and a stochastic damping constant has the Tsallis distribution as the sta-
tionary solution. This distribution goes over into a power law at high energy. In experiments,
pion and proton transverse momentum distributions were observed in elementary-particle and
heavy-ion collisions. They show nonexponential, power-law-like distribution tails.

Nonconventional distributions are based on a nonconventional entropy formula (which
replaces the Boltzmann entropy), or in general on nonadditive composition rules for thermo-
dynamical systems [16]. Such a formula is the Tsallis entropy [13], discussed vividly in recent
years (although the same formula has been suggested earlier in the context of information
measure theory [15]). It leads to a power law at high energy as canonical distribution, coin-
ciding with the stationary solution of the above-mentioned stochastic problem; but the entropy
is not extensive. A monotonic function of it, locating the maximum for the same canonical
distribution, is proven to be extensive (i.e., additive when the probabilities factorize). It is
easy to see that this formula is a monotnic function of the R�enyi entropy [14].

Nonextensive thermodynamics is announced to be an effective theory for nonequilibrium
and long-range order phenomena [Tsallis]. Particularly interesting are connections to anom-
alous (fractal) diffusion and Levy distributions. Its canonical distribution is a power law,
which occurs in particle and heavy-ion physics experiments [20Ä28]. It is particularly in-
teresting to produce the Tsallis distribution with the help of a Gamma distribution for the
inverse temperature, which may have consequences on the EoS of quark matter [18]. A
possible source of such �uctuations is a multiplicative noise in the heat conduction [19].

In this paper we implement the canonical Tsallis distribution for lattice ˇeld theory.
The �uctuation of the inverse temperature is simulated by a Gamma-distributed anisotropy
parameter, t = at/as. The mean value is 1, the ˇnite width, 1/

√
c, is a parameter in this

approach. Here we present numerical results for a test system with SU(2) gauge ˇelds.

1. THE TSALLIS DISTRIBUTION

Tsallis has suggested a nonextensive thermodynamics, derived on the basis of a gener-
alization of the Boltzmann entropy formula1. In the canonical case the different states of a
system are weighted by

wi =
1

ZTs

(
1 +

βEi

c

)−c

, (1)

in the c → ∞ limit leading back to the Gibbs factor:

lim
c→∞

wi =
1

ZG
exp (−βEi). (2)

The quantity q = 1 + 1/c is the Tsallis index. The average energy (and the average number
in the grand canonical approach) is given by a sum with slightly different weight factors due
to the derivation of a power,

〈E〉 =
1
Z

∂

∂β
Z =

1
Z

∑
i

Ei

(
1 +

βEi

c

)−(c+1)

. (3)

1It seems there are earlier publications of this formula in the information theory [15], but without claiming to be
a universal framework.
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This factor can be obtained as the stationary distribution of a Langevin equation for a particle
with momentum p, ṗ + γp = ξ, with stochastic γ and ξ factors. For 〈γ〉 = G, 〈ξ〉 = 0
and white noise correlations with the corresponding strengths 2C and 2D, one arrives at the
following correspondence: c = 1+2G/C and β = mG/D with the energy E = p2/2m [12].
The Tsallis distribution weight factor, wi, on the other hand, can be obtained as an integral
of Gibbs factors over the Gamma distribution,

wi =
1

ZTs

∞∫
0

dt wc(t) exp (−tβEi), (4)

with

wc(t) =
cc

Γ(c)
tc−1 e−ct. (5)

Γ(c) = (c−1)! for integer c is Euler's Gamma function. By its deˇnition, wc(t) is normalized
to one.

Based on this, any canonical Gibbs expectation value, if known as a function of β, can
be converted into the corresponding expectation values with the canonical Tsallis distribu-
tion. The respective partition functions, ZG and ZTs ensure the normalization of the wi

probabilities,
∑
i

wi = 1. They are related to each other:

ZTs(β) =
∑

i

∞∫
0

dt wc(t) exp (−tβEi) =

∞∫
0

dt wc(t)ZG(tβ). (6)

The above formula can be interpreted as averaging over different β valued Gibbs simulations,
as an instance of the superstatistical approach [17].

2. APPLICATION TO LATTICE GAUGE FIELD THEORY

The question arises, which strategy is the best to follow in order to perform lattice ˇeld
theory simulations with Tsallis statistics instead of the Gibbs one. In the following we factorize
the arguments of path integrals to an observable which does not explode exponentially with the
lattice size, and to a weight factor which scales like exp (−N) with the total lattice size N =
NtN

3
s . We model the Tsallis distribution through a Gamma distributed inverse temperature

in the physical system. The lattice simulation incorporates the physical temperature by the
period length in the Euclidean time direction: β = Ntat. Due to the restriction to a few
integer values of Nt, we simulate the Gamma distribution of the physical β = 1/T by a
Gamma distribution of the timelike link lengths, at. We assume that its mean value is equal
to the spacelike lattice spacing, as. Then the ratio t = at/as follows a normalized Gamma
distribution with the mean value 1 and a width of 1/

√
c. (In the view of ZEUS e+e− data

c ≈ 5.8 ± 0.5, the width is about 40%.)
For calculating expectation values in ˇeld theory a generating functional based on the

Legendre transform of Z is used. Our starting assumption is formula (6) with

ZG [tβ] =
∫

DU e−S[U,t] (7)
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in a shorthand notation of path integrals. Since we simulate the canonical power-law dis-
tribution by a lattice with �uctuating asymmetry ratio, there are two limiting strategies to
execute the Legendre transformation: i) in the annealing scenario the lattice �uctuates slowly
and one considers ˇrst summations over ˇeld conˇgurations, in the ii) quenched scenario on
the contrary, the lattice �uctuations are fast, form an effective action (virtually reweighting
the occurrence probability of a ˇeld conˇguration), and the summation over possible ˇeld
conˇguration is the slower process performing the second (i.e., the path-) integral. In the ˇrst
case the coupling of the external source current is instantaneous and therefore in the ata

3
s

factor inherent in J · U =
∫

d4xJ(x)U(x) the �uctuating ratio t is present, so we consider

ZTs [J ] =
∫

dt wc(t)
∫

DU e−S[U,t]etJ·U . (8)

For the simplest expectation value, for the ˇeld itself, we obtain in this case

〈U〉 =
1

ZTs

δ

δJ
ZTs

∣∣∣∣
J=0

=
∫

dt wc(t)
∫
DUe−S tU∫

dt wc(t)
∫
DU e−S

(9)

which can be rewritten with the help of an effective action deˇned by

e−Seff [U ;v] =
∫

dt wc(t) tv e−S[U,t], (10)

in the form

〈U〉 =
∫
DU e−Seff [U ; 1]U∫
DU e−Seff [U ; 0]

. (11)

The extra t factor resembles the occurrence of the power −(c+1) in place of −c by calculating
the average energy with the help of the Tsallis distribution.

In the quenched case the ˇeld evolution and therefore the coupling to an external source
feels the mean ratio only, which is one. In this case

ZTs [J ] =
∫

DUeJ·U
∫

dt wc(t) e−S[U,t], (12)

and the ˇeld expectation value does not contain an extra power of t. We arrive at

〈U〉quench =
∫
DU e−Seff [U ; 0]U∫
DU e−Seff [U ; 0]

. (13)

Now one generic effective action governs all expectation values, but since this picture does
not follow the behavior obtained by considering multiplicative noise, which coincides with the
rules derived in Tsallis thermodynamics, we consider in the following the annealing option.

In any case the effect of t �uctuation is an effective weight for ˇeld conˇgurations, which
may depend on a scaling power according to the time (or energy) dimension of the operator
under study. In general, we consider the Tsallis expectation value of an observable Â[U ] over
lattice ˇeld conˇgurations U . Â may include the timelike link length, say with the power v:
Â = t vA. The Tsallis expectation value then is an average over all possible at link lengths
according to a Gamma distribution of at/as. We obtain

〈A〉Ts =
1

ZTs

cc

Γ(c)

∫
dt tc−1 e−c t

∫
DUA [U ] tv e−S[t,U ], (14)
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with

ZTs =
cc

Γ(c)

∫
dt tc−1 e−c t

∫
DU e−S[t,U ]. (15)

The t dependence of the lattice gauge action is known for long: due to the time derivatives of
vector potential in the expression of electric ˇelds, the ®kinetic¯ part scales like ata

3
s/(a2

t a
2
s) =

as/at, and the magnetic (®potential¯) part like ata
3
s/(a2

sa
2
s) = at/as

1. This leads to the
following expression for the general lattice action:

S [t, U ] = a t + b/t, (16)

where a = Sss[U ] contains spaceÄspace-oriented plaquettes and b = Sts[U ] contains timeÄ
space-oriented plaquettes. The simulation runs in lattice units anyway, so actually the U
conˇgurations are selected according to weights containing a and b. In the c → ∞ limit
the scaled Gamma distribution approximates δ(t − 1) (its width narrows extremely, while its
integral is normalized to one), and one gets back the traditional lattice action S = a + b and
the traditional averages. For ˇnite c, one can exchange the t integration and the conˇguration
sum (path integral) and obtains exactly the power-law-weighted expression. The expectation
value (14) becomes

〈A〉Ts =
∫
DU Wv, c [U ]∫
DU W0, c [U ]

, (17)

with the Gamma �uctuating time-link averaged general weight factor,

Wv,c =
cc

Γ(c)

∫
dt tv+c−1 e−c t e−S[t,U ]. (18)

The t integration can be carried out analytically using the replacement t = et
√

b/(a + c)
and Eq. (16). The result contains the K-Bessel function:

Wv,c =
cc

Γ(c)

(
b

a + c

) c+v
2

2 Kv+c

(
2
√

b(a + c)
)

. (19)

The K-Bessel function has an exponentially decreasing asymptotics, so we are in principle
able to utilize known Monte Carlo techniques in order to calculate Tsallis expectation values.
On the other hand, we cannot simply use old data produced according to the weight e−(a+b),
because the argument of the K-Bessel function is not a + b. This makes it necessary to redo
lattice calculations Å but only with a slightly increased effort.

In the c → ∞ limit the conventional Gibbs thermodynamics is restored; here we con-
sider the Gamma-distributed integral of a Taylor-expandable function of the asymmetry
parameter, t:

I =
cc

Γ(c)

∞∫
0

dt tc−1 e−ct f(t), (20)

with

f(t) =
∞∑

n=0

fntn. (21)

1This generalizes to all lattice ˇeld actions: kinetic and mass terms scale like 1/t, potential terms like t.
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The integral for a given t power can be done analytically and we arrive at

I =
∞∑

n=0

fn
Γ(c + n)
cnΓ(c)

. (22)

The expression involving the Gamma functions can be expanded as a product with n factors,
each being one plus something in the order of 1/c. In the large c limit this starts by one, and
continues as the sum of integers from zero to n starting with n = 2. So we get the following
expansion:

I = f(1) +
1
2c

f ′′(1) + O(1/c2). (23)

The leading term is the original function at t = 1 (this is the mean value of the Gamma
distribution), the subleading term is proportional to the second derivative of the function at
t = 1. For 1/c = 0 one gets f(1), proving that the t distribution approaches δ(t − 1).
The subleading term corresponds to a Gaussian approximation for the �uctuations.

3. EQUATION OF STATE

The calculation of the equation of state in lattice ˇeld theory is based on asymmetric
lattices, therefore we extend our treatment now to lattices, where the timelike lattice constant
not only �uctuates, but also its mean value is not necessarily equal to its spacelike pendant.
The partition function is given by the average over the Gamma distribution,

Z =
∫

dt wc(t)
∫

DU e−S(U ;tat,as), (24)

where the action is built from an asymmetric summation of spaceÄspace- and timeÄspace-like

plaquette contributions, Ps and Pt, given by the generic form of P = 1 − 1
N

Re Tr (Uplaq)

for the gauge group SU(N):

S =
N

g2

∑ (
at

as
tPs +

as

at

Pt

t

)
. (25)

The pressure and energy density will be obtained from the partition function Z according to
standard thermodynamical rules with β = 1/T inverse temperature [2, 4]:

p =
1
β

∂

∂V
ln Z =

1
NtN3

s

1
3ata2

s

∂

∂as
ln Z,

e = − 1
V

∂

∂β
ln Z = − 1

NtN3
s

1
a3

s

∂

∂at
ln Z.

(26)

For an ideal gas Z ∼ V T 3, so ln Z ∼ 3(ln as − ln at). In this case p = e/3, as it is well
known. Therefore, it is particularly interesting to consider the interaction measure,

Δ =
e − 3p

T 4
. (27)
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Another trivial extreme case is that of the constant ˇeld conˇguration. In this case ln Z ∼
ata

3
s ∼ βV leading to e + p = 0. Such a relation is typical for the bag constant.
In general, the lattice gauge ˇeld theory describes a strongly interacting system. Besides

the trivial as and at factors due to operator dimensions, a dependence of the coupling strength
due to renormalization is taken into account. The ®line of constant physics¯ requires in the
one-loop approximation

a
∂

∂a

(
N

g2

)
= −2NB (28)

for both the at- and as-dependences (B = −11/(24π2) for SU(N)). Restoring the symmetry
of the lattice spacings at the end (but keeping Nt 	= Ns), we arrive at the following pressure
and energy density in lattice units:

a4p = 2NB(tPs + Pt/t) +
N

g2
(tPs − Pt/t),

a4e = −2NB(tPs + Pt/t) +
N

g2
(tPs − Pt/t).

(29)

This formula is the extension of the standard expressions used so far in lattice gauge theory
in GibbsÄBoltzmann thermodynamics [29]. Finally, the comparison of the interaction mea-
sure, Δ on symmetric and asymmetric lattices should approach the physical value, which
then can be obtained from the 1/N4

t -like scaling of the plaquette expectation values:

Δ|Nt�Ns

Nt=Ns
= 6N4

t

(
1 − 1

c

)4

2NB
(
2P0 − tPs − Pt/t

)
, (30)

with

P0 =
1
2
(tPs + Pt/t) (31)

denoting the average plaquette contribution on the symmetric lattice. (According to our
previous discussion in the large Nt = Ns limit the t distribution approaches a Dirac delta, so
there is practically no �uctuation of the formal temperature.)

4. NUMERICAL RESULTS

We apply a Metropolis algorithm for updating links. The update criterion is built by an
action where the electric (spaceÄtime-oriented plaquette) contributions are divided by t and the
magnetic (spaceÄspace-oriented plaquette) contributions are multiplied by a factor t, randomly
chosen as a deviate from the Gamma distribution at each new sweep over the whole lattice.
This way we take into account interactions inside the lattice generated by the SU(2) YangÄ
Mills action, but do not let the system relax to a Gibbs distribution. Instead the convolution
of the exponential and the Gamma distribution Å eventually a Tsallis distribution Å is the
attractor in the Monte Carlo process.

We have studied an SU(2) lattice gauge ˇeld system on a 104 symmretric and on a 103×2
asymmetric lattice in order to learn about the equation of state.

In the followings we discuss our results presented in the ˇgures. In Fig. 1 histograms
of the Euler Gamma distributions are plotted. This distribution of the asymmetry factor t
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has been applied on the top of the lattice Monte Carlo code, renewed after each sweep over
the whole lattice. For comparison a hypothetical distribution with 2 million draws (spiky
line in the background) is shown. In Fig. 2 the average of the timeÄspace- and spaceÄspace-
like plaquettes multiplied with proper asymmetry factors during the Monte Carlo process is
shown. It leads to an equipartition, but with different magnitude of �uctuations dependning
on the width parameter, c. In Fig. 3 the action difference, the basis of obtaining e/T 4, as
a function of the effective coupling, b = 4/g2, monotonically depending on the temperature
ratio T/Tc is shown. For different values of nonextensivity (parameter c), see the legend.
In Fig. 4 the action sum, the basis of obtaining (e − 3p)/T 4, as a function of the effective

Fig. 1. Histograms of the Euler Gamma distributions applied on the top of the lattice Monte Carlo code

for the asymmetry factor, t. For comparison a hypothetical distribution with 2 million draws (spiky line
in the background) is shown

Fig. 2. The equipartition of the timeÄspace- and spaceÄspace-like plaquettes multiplied with proper

asymmetry factors during the Monte Carlo process leads to the average values above. Different symbols
belong to different values of the width parameter, c, according to the legend
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Fig. 3. The action difference, the basis of obtaining e/T 4, as a function of the effective coupling, b =

4/g2, monotonically depending on the temperature ratio T/Tc. For different values of nonextensivity

(parameter c), see the legend

Fig. 4. The action sum, the basis of obtaining (e− 3p)/T 4, as a function of the effective coupling, b =

4/g2, monotonically depending on the temperature ratio T/Tc. For different values of nonextensivity

(parameter c), see the legend

coupling, b = 4/g2, monotonically depending on the temperature ratio T/Tc is plotted, for
different values of nonextensivity parameter c (see the legend).
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