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INTRODUCTION

A mathematical framework of QFT is a powerful working tool for descrip-
tion of elementary particle interactions. The concept of renormalization and the
practical technique of R-operation generate the renormalizable models of QFT
as self-consistent tools for phenomenological analysis [1]. The SM of ®all in-
teractions¯ is formulated entirely as a local quantum ˇeld theoretical model, and
the proof of its renormalizability has required some extension of the standard
techniques [2, 3]. Despite the pronounced success in explaining the properties of
interactions at high energies, the complete solution of the model is still absent.
The main route of quantitative investigation is still the use of PT in the small
coupling constant based on the computation of integrals represented by Feynman
diagrams.

The classical example of the PT approach has been developed in QED that is a
part of SM. After renormalization of QED there are two parameters Å the electron
mass and the ˇne structure constant α Å that are to be ˇxed to observables which
are computed as PT series in α. With α = 1/137 being small, the precision of the
results is impressive. However, the question has been raised about the behavior of
the PT series in high orders. The arguments have been put forward that the series
is merely asymptotic one [4, 5]. This has caused much interest in summation of
asymptotic series in QFT [6]. Different theoretical aspects of the problem have
been discussed in [7]. Direct quantitative investigation of PT series in QFT and
the question of convergence has been presented in [8].
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Within the problem of PT convergence, it has been realized that one can
identify some ®important¯ terms in the entire PT series and resum them. This
ˇrst leads to the technique of resummation of ®large logs¯ [9]. The ˇrst results
even provoked extreme statements about the fate of local QFT [10]. The correct
interpretation of the ®resummed¯ results emerged within the technique of renor-
malization group [11] (as a review, see [12]). Different types of resummation
have been later suggested: analysis of classical solutions [13], the famous ex-
ample of 1/Nc expansion in QCD [14], large β0 limit in QED [15], and naive
nonabelianization in QCD [16].

The SM requires a hard use of RG for precision analysis. The energy scales
of SM are quite different and coupling constants (especially αs) are quite large.
Indeed, EW physics scale is quite high as given by MZ,W ∼ 90 GeV and
mt = 175 GeV, while the hadronic scales are rather low as mb = 5 GeV and
light hadrons at 1 GeV. The process of DIS allows for wide range of scale by
varying Q. The modern experiments include hadrons (LHC) which requires the
analysis of hadronization and the use of QCD with αs(1 GeV) = 0.45. Thus,
the use of PT in αs(μ) at low energies μ = 1 GeV requires resummation as the
convergence is slow.

Actual topics of the present phenomenology in SM include: i) account for
higher-order PT corrections with NNLO being almost a standard; ii) precise
deˇnition of the expansion parameter or the choice of the renormalization scheme,
MS scheme is a standard for technical reasons as dimensional regularization
comprises a main computational framework, however, more physical schemes are
also in use like αV from the Coloumb part of the potential of heavy quarks for
the dynamics in NR QCD for production near the threshold; iii) resummation of
some inˇnite subsets of the series in αs. The most popular ways of improving PT
is the use of RG that sums powers of logs (αs ln (Q/μ))n, αs(αs ln (Q/μ))n. But
some other ways are also used: β0 dominance (naive nonabelianization) that sums
terms of the form (β0αs)n, or effects of analytic continuation between Euclidean
and Minkowskian regions that basically deal with terms (πβ0αs)2n [17Ä19].

Using inˇnite subsets of PT allows for nonpolynomial terms in αs. The
PT series are asymptotic and resummation may provide terms that interfere with
non-PT expansions for description of some processes that account for the terms
of the form exp [−(1/αs(Q))]: higher twists in light-cone type expansions, or
condensate type terms for correlation functions at short distance expansions. This
means that numerical values of such non-PT parameters depend on how PT series
are treated.

This is very important for analysis of hadronic τ decays. Theoretical de-
scription is simple and related to e+e− annihilation. The record number of PT
terms are available. Therefore, the structure of the series is important. Also,
it is not an academic exercise as it is important for hadronic contributions to
αem(MZ) [20,21] and to the muon g − 2 [22,23] which are important for Higgs
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mass determination and are also key players in constraining new physics search
beyond SM [24]. And, it is also a ˇeld of interest of D.Kazakov.

1. HIGH-ORDER PT IN QCD

A classic example of application of PT series in QCD is analysis of e+e−

cross section [25Ä27]. The relevant expansion parameter is large, such that a
proper accuracy requires a long PT expansion. With such a large number of
terms, one may already encounter the asymptotic nature of the perturbation series
in which case no further increase of precision is possible. The main problem for
the theory is convergence and the interpretation of the numerical values given
by the series. An additional freedom and also complication is that the expansion
parameter is not uniquely determined and the series should be analyzed in a
scheme invariant way [28]. Because of the scheme redeˇnition freedom, it is
difˇcult to judge the quality of convergence of the series. In this section, we
present a way to bypass this complication by establishing the relation between
observables.

1.1. Comparison of Observables in e+e− and τ Decays. Within massless
pQCD the same Green's function determines the hadronic contribution to the
τ -decay width and the moments of the e+e− cross section. This allows one
to obtain relations between physical observables in the two processes up to an
unprecedented high order of perturbative QCD [29]. A precision measurement of
the τ -decay width allows one then to predict the ˇrst few moments of the spectral
density in e+e− annihilations integrated up to s ∼ m2

τ with high accuracy.
The question of numerical convergence is in�uenced to a large extent by the

freedom of the choice of the renormalization scheme for the truncated perturbation
series [30Ä32]. Therefore, it is desirable to obtain predictions for observables
which are renormalization scheme independent.

We compare moments of the spectral density in e+e− annihilation and the
hadronic contributions to Γ(τ → ντ + hadrons) [33Ä36]. The reduced decay
width rτ

Rτ =
Γ(τ → ντ + hadrons)
Γ(τ → ντ + μ + ν̄μ)

= 3(1 + rτ ) (1)

is determined by massless pQCD, for which the axial and vector contributions
are identical. The expansion for rτ starts directly with a(μ2), where a = αs/π.
In e+e− annihilation the cross section is determined by the imaginary part of the
vacuum polarization,

Re+e−(s) = 12π Im Π(s) = Nc

∑
Q2

i (1 + r(s)) = 2(1 + r(s)). (2)
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In pQCD, one has

r(s) = a(μ2)+(k1+β0L)a2(μ2)+
(

k2−
1
3
π2β2

0+(2β0k1+β1)L+β2
0L2

)
a3(μ2)+

+
(

k3 − π2β2
0k1 −

5
6
π2β0β1 + (3β0k2 + 2β1k1 + β2 − π2β3

0)L+

+
(

3β0k1 +
5
2
β1

)
L2 + β3

0L3

)
a4(μ2) + . . . (3)

with L = ln (μ2/s). We deˇne moments of r(s),

rn(s0) = (n + 1)

s0∫
0

ds

s0

(
s

s0

)n

r(s) (4)

and
rτ = 2r0(m2

τ ) − 2r2(m2
τ ) + r3(m2

τ ). (5)

Equation (5) is inverted within perturbation theory. One can then express the per-
turbative representation of one observable, i.e., any given e+e− moment rn(m2

τ ),
in powers of rτ using the perturbative expansion of the τ -decay observable. The
strong coupling constant αs in any given scheme serves only as an intermediate
agent to obtain relations between physical observables. The reexpression of one
perturbative observable through another is a perfectly legitimate procedure in per-
turbation theory, and the result is independent of the choice of the renormalization
scheme. One ˇnds

rn(m2
τ ) = f0nrτ + f1nr2

τ + f2nr3
τ + f3nr4

τ + f4nr5
τ + O(r6

τ ), (6)

where coefˇcients fin are given in the Appendix.
For rexp

τ = 0.216± 0.005, one can investigate the convergence properties of
the series for the ˇrst few moments that go

r0/0.216 = 1 − 0.284− 0.069 + 0.110 + . . . , (7)

r1/0.216 = 1 − 0.527− 0.143 + 0.177 + . . . , (8)

r2 = 0.216(1− 0.608 − 0.115 + 0.269 + . . . , (9)

r3 = 0.216(1− 0.648 − 0.091 + 0.317 + . . . (10)

One clearly see the divergence of the perturbation series for the moments n =
0, 1, 2, 3. Since these are scheme-independent perturbative relations between dif-
ferent sets of observables, there is no freedom in redeˇnition of expansion pa-
rameter. One sees very slow(?) convergence. Has asymptotics been already
reached?
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1.2. Sign of Asymptotics in τ Moments. How can the asymptotic nature of
the series reveal itself? With redeˇnition of the charge, one can create any type
of the series that hides the true rate of convergence. Therefore, one should work
in a scheme-invariant way. We concentrate on the analysis of the tau system
only.

The spectral density has been calculated with a very high degree of accuracy
within perturbation theory (see, e.g., [37Ä40]) and been confronted with experi-
ment to a very high precision [33Ä36]. In the paper [41], arguments have been
given that in some sense, within the ˇnite-order perturbation theory analysis, the
ultimate theoretical precision has been reached already now. The limit of preci-
sion exists due to the asymptotic nature of the perturbation theory series. The
actual magnitude of this limiting precision depends on the numerical value of the
coupling constant which is the expansion parameter. We do not touch on power
corrections here [42,43].

The central quantity of interest in the τ system is the hadronic spectral density
which can be measured in the ˇnite energy interval (0, Mτ = 1.777 GeV). The
appropriate quantities to be analyzed are the moments. We deˇne moments of
the spectral density by (with Mτ chosen to be the unity of mass)

Mn = (n + 1)

1∫
0

ρ(s)sn ds ≡ 1 + mn. (11)

The invariant content of the investigation of the spectrum, i.e., independent of
any deˇnition of the charge, is the simultaneous analysis of all the moments.

In order to get rid of artiˇcial scheme-dependent constants in the perturbation
theory expressions for the moments, we deˇne an effective coupling a(s) directly
on the physical cut through the relation

ρ(s) = 1 + a(s). (12)

All the constants that may appear due to a particular choice of the renormalization
scheme are absorbed into the deˇnition of the effective charge (e.g., [30,44Ä46]).
When deˇning the effective charge directly through ρ(s) itself, we get theoret-
ical perturbative corrections to the moments only because of running. Without
running, one would have

Mn = 1 + a(Mτ ) ≡ 1 + a or mn ≡ a. (13)

In any given order of PT, the running of the coupling a(s) contains only loga-
rithms of s:

a(s) = a+β0La2+(β1L+β2
0L2)a3+

(
β2L +

5
2
β1β0L

2 + β3
0L3

)
a4+. . . , (14)
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where a = a(M2
τ ), L = ln (M2

τ /s). At ˇxed order of PT the effects of running
die out for large-n moments, improving the convergence of the series

m0 = a + 2.25a2 + 14.13a3 + 87.66a4 + 654.16a5,

m1 = a + 1.125a2 + 4.531a3 + 6.949a4 − 64.77a5, (15)

m2 = a + 0.75a2 + 2.458a3 − 1.032a4 − 68.98a5.

For large n the moments behave better because the infrared region of integration
is suppressed, but in high orders they start to diverge. The coefˇcients of the
series in Eq. (15) are saturated with the lowest power of logarithm for large n.

To suppress experimental errors from the high energy end of the spectrum,
the modiˇed system of moments

M̃kl =
(k + 1)!

k!

1∫
0

ρ(s)(1 − s)k ds ≡ 1 + m̃k (16)

can be used. The integral in Eq. (16) is dominated by contributions from around
low scale. A disadvantage of choosing such moments is that the (1−s)k factor en-
hances the infrared region strongly and ruins the perturbation theory convergence.
As an example, one has

m̃0 = a + 2.25a2 + 14.13a3 + 87.66a4 + 654.2a5,
(17)

m̃1 = a + 3.375a2 + 23.72a3 + 168.4a4 + 1373.29a5,

which shows bad convergence. The reason is the contribution of the log-term

(k + 1)

1∫
0

(1 − s)k ln (1/s) ds =
k+1∑
j=1

1
j

(18)

and

(k + 1)

1∫
0

(1 − s)k ln2 (1/s) ds =

⎛
⎝k+1∑

j=1

1
j

⎞
⎠

2

+
k+1∑
j=1

1
j2

(19)

that grow as ln (k) and ln2(k) for large k.
The large difference in accuracy between m0 and m1 is a general feature of

the moment observables at ˇfth order of perturbation theory: one cannot get a
uniform smallness at this order for several moments at the same time. For any
single moment, one can always redeˇne the charge and make the series converge
well at any desired rate, but then other moments become bad in terms of this
charge. The invariant statement about the asymptotic growth is that the system
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of moments mn, with n = 0 included, cannot be treated perturbatively at the ˇfth
order of perturbation theory.

To demonstrate this in a scheme-invariant way, we choose the second moment
(which is already well convergent) as a deˇnition of our experimental charge
and ˇnd

m0 = m2 + 1.5m2
2 + 9.417m3

2 + 59.28m4
2 + 457.54m5

2,

m1 = m2 + 0.375m2
2 + 1.51m3

2 + 2.527m4
2 − 17.64m5

2,

m2 = m2, (20)

m3 = m2 − 0.19m2
2 − 0.544m3

2 + 0.742m4
2 + 16.8m5

2,

m4 = m2 − 0.3m2
2 − 0.803m3

2 + 1.69m4
2 + 27.2m5

2.

The convergence is absent.
1.3. αs from τ Width in an RG-Invariant Way. Having in mind that the

series expansion has reached the ultimate accuracy, we try to avoid expansions
and to analyze the system in a concise way [47]. The observation is that any
perturbation theory observable generates a scale due to dimensional transmutation
and this is its internal scale. It is natural for a numerical analysis (and is our
suggestion) to determine this scale ˇsrt and then to transform the result into an
MS-scheme parameter using the renormalization group invariance.

We use the explicit renormalization scheme invariance of the theory to bring
the result of the perturbation theory calculation into a special scheme ˇrst, then
we perform a numerical analysis in this particular scheme. Only after that, we
transform the obtained numbers into the reference MS scheme.

A dimensional scale in QCD emerges as a boundary value parameterizing the
evolution trajectoty of the coupling constant. The renormalization group equation

μ2 d

dμ2
a(μ2) = β(a(μ2)), a =

α

π
(21)

is solved by the integral

ln
(

μ2

Λ2

)
= Φ(a(μ2)) +

a(μ2)∫
0

(
1

β(ξ)
− 1

β2(ξ)

)
dξ (22)

with

Φ(a) =
1

aβ0
+

β1

β2
0

ln
(

aβ2
0

β0 + aβ1

)
, β2(a) = −a2(β0 + aβ1). (23)

The MS-scheme parameter Λ is deˇned through expansion

a(Q2) =
1

β0L

(
1 − β1

β2
0

ln (L)
L2

)
+ O

(
1
L3

)
, L = ln

(
Q2

Λ2

)
. (24)
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The evolution trajectory of the coupling constant is parameterized by the scale
parameter Λ and the coefˇcients of the β function βi with i > 2 (see, e.g., [31]).
The evolution is invariant under the renormalization group transformation

a → a(1 + κ1a + κ2a
2 + κ3a

3 + . . .) (25)

with the simultaneous change

Λ2 → Λ2 e−κ1/β0 , (26)

β0,1 left invariant and

β2 → β2 − κ2
1β0 + κ2β0 − κ1β1,

β3 → β3 + 4κ3
1β0 + 2κ3β0 + κ2

1β1 − 2κ1(3κ2β0 + β2).

This invariance is violated in higher orders of the coupling constant because
of omitting higher orders for the β functions. This is the source for different
numerical outputs of analyses in different schemes.

We introduce an effective charge aτ = δth
P [30,46] and extract the parameter

Λτ which is associated with aτ through Eq. (22) with an effective β function

βτ (aτ ) = −a2
τ (2.25 + 4aτ − 12.3a2

τ + 38.1a3
τ). (27)

In this procedure the only perturbative objects present are the β functions. We
treat both as concise expressions, and at every order of the analysis we use
the whole information of the perturbation theory calculation. For the coupling
constant in the MS scheme, we ˇnally ˇnd

αs = 0.3184± 0.0159. (28)

For the reference value for the coupling constant at the scale MZ = 91.187 GeV,
we run to this reference scale with the four-loop β function in the MS scheme [48]
and three-loop matching conditions at the heavy quark (charm and bottom) thresh-
olds [49] to get [47]

αs(MZ) = 0.1184± 0.0007(exp.) ± 0.0006(cb.). (29)

Can one do better than ˇnite order of PT? Yes, but then one has to resum!

2. RESUMMATION ON THE CUT: q2 > 0

With new high-order corrections of perturbation theory hardly available any-
more in cases like e+e− annihilation or τ -lepton width, it is tempting to spec-
ulate on the general structure of series within perturbation theory (PT) [50Ä52].
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Much attention has recently been paid to possible factorial divergences in PT
series [53Ä57] generated through the integration over an infrared region in mo-
mentum space [58].

Direct going beyond FOPT by account of RG logs in ρ(s) does not work.
For a simple approximation ρ(t) = αs(t) and

αs(t) =
αs(s)

1 − β0αs(s) ln (s/t)
= αs(s)

∞∑
n=0

(β0αs(s) ln (s/t))n,

one ˇnds

F (s) =
1
s

s∫
0

αs(t) dt = αs(s)
∞∑

n=0

(β0αs(s))nn!

with factorial growth that is not Borel summable. The reason is Landau pole in
the expression for αs(t) or divergence of the integrand outside the convergence
circle |a(s) ln (s/t)| < 1. Higher-order terms in ρ(t) are important [59].

For estimation of uncertainties of theoretical predictions for the τ -lepton
width, different approaches for deˇning the integration over infrared region are
used. This problem has been widely discussed in the literature (see, e.g., [60]).
We propose a set of schemes that regularize the infrared behavior of the coupling
constant in general and allow one to use any reference scheme for high-energy
domain [59]. All these schemes are perturbatively equivalent at high energies.
The uncertainties that come from low-energy region are quite essential as our
study shows.

2.1. Example with Explicit Solution. Consider ˇrst an example with explicit
solution for αs(μ2) [59]. Consider a β function

β(a) = − a2

1 + κa2
, κ > 0

with βas(a) = −a2 + . . . at a → 0. The RG equation has a solution

a(μ2) =
− ln

μ2

Λ2
+

√
ln2 μ2

Λ2
+ 4κ

2κ
,

and the pole at μ2 = Λ2 of the asymptotic solution aas(μ2) = (ln (μ2/Λ2))−1

disappears.
Thus, the particular way of summing an inˇnite number of speciˇc pertur-

bative terms for the β function can cure the Landau pole problem. There are
no nonperturbative terms added, but the freedom of choosing a renormalization
scheme for an inˇnite series was used. It can be considered either as a pure PT
result in some particular RG after an inˇnite resummation or as a sort of Pade
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approximation of some real β function that might include nonperturbative terms
as well. The only important point for us here is that the running coupling obeying
the RG equation with such a β function has a smooth continuation to the infrared
region. Because the expansion parameter becomes large in the infrared region
the polynomial approximation is invalid in this domain. Here we encounter a
particular case of the general situation that the expansion in unphysical parameter
αs is incorrect, and the proper way of action is to expand one physical quantity
through another.

2.2. Example with Explicit Expression for the Integral. Consider now the
example with

β(a) =
−a2

1 + 2a
.

In this case the integral

F (s) =
1
s

s∫
0

a(t) dt

can be found explicitly [59]. The RG equation for the effective charge a(s) is
given by

ln (s/Λ2) =
1

a(s)
− 2 ln a(s),

and F (s) reads

F (s) =
1
s

s∫
0

a(t) dt = a(s) + a(s)2 − a(s)2 exp
(
− 1

a(s)

)
.

The last term gives the ®condensate¯ contribution. Up to logarithmic corrections
F cond(s) ∼ Λ2/s. This example shows that a change of the evolution in the IR
region resums factorials. The last term cannot be detected if integrated by series
near a = 0.

To study higher orders of PT, the Borel transformation is often used. The
Borel analysis for this example goes as follows:

F (a) =

∞∫
0

e−ξ/aB(ξ) dξ, (30)

and the Borel image B(x) is B(x) = 1+x+(1−x) θ(x−1). The PT series with
all coefˇcients known still does not allow one to restore the exact answer through
Borel summation. A naive Borel image for polynomials from deˇnition (30)
behaves as B(x) =

∑
k=1

fkxk/(k− 1)! which is correct at small x but not at large

x. The explicit result shows that the Borel image is singular at x = 1.
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There is still another possibility to treat the PT series: resummation in the
complex q2 plane [19].

3. RESUMMATION ON THE CONTOUR

Integrating the function Πhad(z) over a contour in the complex q2 plane
beyond the physical cut s > 0, one ˇnds∮

C

Π(z) dz =
∫
cut

ρ(s) ds,

with

ρ(s) =
1

2πi
(Π(s + i0) − Π(s − i0)) .

Using the approximation Πhad(z)|z∈C ≈ ΠPT(z)|z∈C , which is well justiˇed
sufˇciently far from the physical cut, one obtains∮

C

Πhad(z) dz =
∫

cut

ρ(s) ds =
∮
C

ΠPT(z) dz,

with the integral over the hadronic spectrum computable in pQCD. The total decay
rate of the τ and its moments are the quantities that can be computed this way.
The use of RG improved ΠPT(z) on the contour has ˇrst been considered in [19].
The technique is now known as CIPT [19, 61]. Parameterizing the contour by
Q2 = M2

τ eiϕ, one obtains for Mkl

Mkl = 1 + mkl =
(−1)l

2π

(k + l + 1)!
k!l!

π∫
−π

Π(M2
τ eiϕ)(1 + eiϕ)k ei(l+1)ϕ dϕ.

This program has been realized for τ decays and extraction of αs(M2
τ ) and

ms(M2
τ ) in a series of papers [62Ä64].

3.1. Resummation with 4-Loop β Function. Resummation of PT series for
τ -decays related observables with 4-loop β function in MS scheme has been
studied in [62]. The integrals over the contour give the resummed functions that
are analytic at the origin with a ˇnite radius of convergence. The convergence
radius of a series given explicitly by integration over the contour can be analyzed
through the singularity structure in the complex aτ plane [62]. In the lowest order
example, the radius of convergence is determined by the solution of the equation
1 − iπβ0a = 0, leading to the region of convergence |a| < 1/πβ0. In higher
orders of β-function accuracy, the investigation of the convergence properties of
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the resummed functions Mi,n(aτ , β) is quite involved. The evolution of a along
the contour Q2 = m2

τ eiφ, φ ∈ [−π, π] is governed by the renormalization group
equation

−i
∂a

∂φ
= β(a) = −a2(1 + ca + c2a

2 + c3a
3 + . . .), (31)

and the closest singularity in the complex aτ plane then determines the conver-
gence radius of the resummed functions Mi,n(aτ , β). The results for critical
values of αs = αs(m2

τ ) in increasing orders of β function read

ᾱ(1)
s = 0.444, ᾱ(2)

s = 0.331, ᾱ(3)
s = 0.310, ᾱ(4)

s = 0.299. (32)

The convergence radii become smaller as the order of the β function increases. It
is interesting to speculate that the shrinking of the convergence radius continues
as one goes to ever higher orders of β-function accuracy, including the possibility
that the convergence radius shrinks to zero when the order of the perturbative
β-function expansion goes to inˇnity.

The value of aτ is outside the convergence region. This means that the
perturbative approximation for moments diverges at the scale determined by the
experimental data for the semileptonic τ -decay width. The resummed values
are not accessible by using higher and higher order approximations of PT in
polynomial form.

3.2. Relations between Observables with Resummation. Here we discuss
a model of how the technique of using the direct PT relations between observ-
ables can give results that are also obtained in more sophisticated resummation
approach [63]. Consider two observables given by perturbative series in some
given scheme, namely,

f(a) = a(1 − a + a2 − . . .) =
a

1 + a
(33)

and
g(a) = a(1 − 2a + 4a2 − . . . ) =

a

1 + 2a
. (34)

The functions f(a) and g(a) can be seen to be related by

g(f) =
f

1 + f
= f(1 − f + f2 − . . .). (35)

If we ˇt the right-hand side of Eq. (33) to an experimental value of about f = 0.6,
we get a = 1.5. But for this value of the coupling, the series in Eq. (33) diverges.
So we cannot get a from it without a proper resummation procedure that in this
case is trivially given by the appended exact formula. Consequently, we cannot
get a prediction for g, using the series in Eq. (34) in terms of a. On the other
hand, the direct relation in terms of the series in Eq. (35) converges perfectly and
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gives an unambiguous result for g in terms of measured f . Of course, for such
an improvement to occur, one has to analyze in detail the underlying theory and
the origin of the series. The analysis of τ system with account for ms corrections
has been performed in ˇnite-order PT in [65,66], and with resummation in [67].
Resummation on the contour along the above lines in effective scheme has been
done in [64]. It happens that numerical results of the used techniques are different.
It is important to understand the difference, or answer the question of to what
extent the resummation recipe restores the same correlation function.

4. COMPARING RESUMMING TECHNIQUES

Because of arbitrariness of resummation, it is important to understand the
relation between different techniques. Clearly, the different resummation of
asymptotic series gives functions that have the same asymptotic expansion but
differ as the total functions. General lore is that the difference behaves as
exp (−1/αs). This form emerges from the Borel resummation recipe and is
conˇrmed by the explicit example with resummation on the cut [59], although
other forms are also possible [68].

Here we discuss the relation between CIPT and resummtion on the cut known
as analytical PT [69,70] following the lines of the paper [71]. At LO the moments
can be expanded in a convergent series in ατ for β0ατ < 1. The ˇnite radius of
convergence within contour technique of resummation is a general feature which
persists in higher orders of the β function [62, 63]. The convergence radius
decreases when higher orders of the β function are included. In practice, for
αexp

τ /π = 0.14 the relation αexp
τ < 1/β0 is still marginally valid. However, the

exact expression provides an analytic continuation beyond the convergence radius
even when ατ lies outside the convergence radius.

We consider the moment m00 and proceed with the analysis by constructing
just an efˇcient computational scheme. Integrating n times by parts, one obtains

m00 =
1

πβ0

{
φ +

n−1∑
j=1

Γ(j)
(

β0ατ

πr

)j

sin (jφ)+

+
Γ(n)

2

(
β0ατ

π

)n
π∫

−π

eiϕ dϕ

(1 + iβ0ατϕ/π)n

}
, (36)

with the polar coordinate functions r and φ deˇned by

1 ± iβ0ατ = r e±iφ, r =
√

1 + β2
0α2

τ , φ = arctan (β0ατ ). (37)
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The n-fold integration by parts removes a polynomial of order n from the expan-
sion of the logarithm.

One gets an asymptotic expansion with the residual term, i.e., the last term in
Eq. (36) being of the formal order αn

τ . However, the obtained result is not a series
expansion in the original coupling determined in the Euclidean domain but a more
complicated system of functions related to it, as it is important for APT [70]. The
system of functions is ordered, and the asymptotic expansion is valid in the sense
of Poincar	e. The system of functions is obtained by using the expression for
the running coupling in the Euclidean domain and continuing it into the complex
plane and onto the cut. When the analytic structure of the initial function is
known, asymptotic expansions which converge fast for the ˇrst few terms (as a
representation in the form of Eq. (36)) are useful for practical calculations. The
expansion in Eq. (36) can give a better accuracy (for some n and ατ ) than a direct
expansion in αs. Indeed, this expansion includes a partial resummation of the π2

terms, which is a consequence of the analytic continuation [17]. Therefore, the
expansion can be understood as being done in terms of quantities deˇned on the
cut. Because the region near the real axis is important, the continuation causes
a change of the effective expansion parameter ατ → ατ/

√
1 + β2

0α2
τ . The ˇrst

term in the expansion shown in Eq. (36) is just the value for the spectral density
expressed through the coupling in the Euclidean domain.

With the concise expression for the moments at hand, one can change the
form of the residual term. The relation

(n − 1)!
(

β0ατ

π

)n
π∫

−π

eiϕ dϕ

(1 + iβ0ατϕ/π)n
=

= 2π e−π/β0ατ − (n − 1)!
(

β0ατ

π

)n
⎛
⎝ −π∫

−∞

+

∞∫
π

⎞
⎠ eiϕ dϕ

(1 + iβ0ατϕ/π)n
, (38)

valid for any n, leads to a representation of the zeroth order moment in the form

m00 =
1

πβ0

{
π e−π/β0ατ + φ +

n−1∑
j=1

(j − 1)!
(

β0ατ

πr

)j

sin (jφ)−

− (n − 1)!
2

(
β0ατ

π

)n
⎛
⎝ −π∫

−∞

+

∞∫
π

⎞
⎠ eiϕ dϕ

(1 + iβ0ατϕ/π)n

}
. (39)

Here a ®nonperturbative¯ term e−π/β0aτ has appeared.
The moments are analytic functions of ατ for small values of the coup-

ling ατ . This means that the nonanalytic piece in Eq. (38) cancels the corres-
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Fig. 1. Integration contour in the
complex ϕ plane

ponding piece in the residual term. If the resid-
ual term is dropped, the analytic structure dras-
tically changes depending on which representa-
tion, either Eq. (36) or (39), is used.

One can recover the form of the moments
as integrals over a spectral density by going to
the complex plane in ϕ (see Fig. 1)

m00 =
ατ

2π2

π∫
−π

(1 + eiϕ) dϕ

1 + iβ0ατϕ/π
. (40)

This representation is different from Eq. (36)
for n = 1. They differ by an integral which
can be explicitly computed,

ατ

2π2

π∫
−π

dϕ

1 + iβ0ατϕ/π
=

1
πβ0

arctan (β0ατ ). (41)

Now we consider the integration over a rectangular contour in the complex
ϕ plane. The part of the contour on the real axis from −π to π leads to the
moments. The integral over the contour is given by the residue at the pole
ϕ = iπ/β0ατ . We thus have

m00 =
1
β0

(1 + e−π/β0ατ ) − 1
β0

∞∫
0

(1 − e−ξ) dξ

π2 + (ξ − π/β0ατ )2
. (42)

With substitutions −π/β0ατ = ln (Λ2/M2
τ ), −ξ = ln (s/M2

τ ), one obtains

m00 =
1
β0

(
1 +

Λ2

M2
τ

)
− 1

β0

M2
τ∫

0

(1 − s/M2
τ ) ds

(π2 + ln2 (s/Λ2))s
. (43)

Finally,

m00 =
1
β0

(
Λ2

M2
τ

)
+

1
πβ0

M2
τ∫

0

arccos

⎛
⎝ ln (s/Λ2)√

π2 + ln2 (s/Λ2)

⎞
⎠ ds

M2
τ

. (44)

One recognizes this representation as an integration over the singularities of
Π(q2). In addition to a cut along the positive semi-axis, there also appears a part
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of the singularity on the negative real s axis. This part is a pure mathematical
feature of the concrete approximation chosen for Π(q2). The result reads

m00 =

M2
τ∫

−Λ2

σ(s) ds

M2
τ

(45)

with

σ(s) =
1
β0

θ(Λ2 + s)θ(−s) +
1

πβ0
θ(s) arccos

⎛
⎝ ln (s/Λ2)√

π2 + ln2(s/Λ2)

⎞
⎠ . (46)

This formal result can be reformulated as integration over the spectrum σ(s) using
Cauchy's theorem. Indeed,

Disc Π(s) =
2πi

β0

{
θ(Λ2 + s)θ(−s)+

+
1
π

θ(s) arccos

⎛
⎝ ln (s/Λ2)√

π2 + ln2(s/Λ2)

⎞
⎠

}
, (47)

which coincides with σ(s) in Eq. (46). The part of the spectrum on the positive
real axis is an analytic continuation of function Π(Q2) to the cut [17Ä19,69]. It
can be written in the form

σc(s) =
1

πβ0
arctan (β0α(s)). (48)

The differential equation determining the continuum part σc(s) through its initial
value σ(M2

τ ) can be constructed by differentiating Eq. (48) with respect to s,

s
dσc(s)

ds
= −β0

(
α(s)
π

)2 1
1 + β2

0α(s)2
. (49)

By inverting Eq. (48) we have β0α(s) = tan (πβ0σc(s)) for s > 0 and, therefore,
obtain

s
d

ds
σc(s) = − 1

π2β0
sin2 (πβ0σc(s)) for s > 0. (50)

This equation can indeed be considered as an evolution equation for the spectral
density σc(s) determining σc(s) through its initial value σ(M2

τ ). Therefore, one
can introduce an effective charge αM (s) = πσc(s) with an evolution equation

s
daM (s)

ds
= − 1

π2β0
sin2(πβ0aM (s)). (51)
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Thus, one deˇnes the coupling as the value of the spectral density on the cut
far from the IR region. The evolution of this coupling, however, is calculated
by taking into account the analytic continuation. Then it has an IR ˇxed point
with the value aM (0) = 1/β0. If Adler's function starts with other power of
the coupling constant as it is the case for gluonic observables, for instance, this
picture will change. For

D(Q2) =
(

αE(Q2)
π

)2

(52)

the spectral density in leading-order β-function approximation reads

ρ(s) =
1
β2

0

1
ln2(s/Λ2) + π2

=
α2(s)

π2(1 + β2
0α2(s))

, (53)

and an effective coupling is

āM (s) =
α(s)

π
√

1 + β2
0α2(s)

. (54)

The β function for the effective coupling obtained from Eq. (54)

β̄M (āM ) = −β0ā
2
M

√
1 − (πβ0āM )2 =

= −β0ā
2
M

(
1 − 1

2
(πβ0āM )2 + O(ā4

M )
)

(55)

differs from the β function of the effective coupling aM (c.f. Eq. (51))

βM (aM ) = − 1
π2β0

sin2 (πβ0aM ) =

= −β0a
2
M

(
1 − 1

3
(πβ0aM )2 + O(a4

M )
)

(56)

at the next-to-leading order. Thus, the resummation on the contour and on the
positive semi-axis for s differs by the integral over the negative real semi-axis
for s.

In the contour formulation it is not essential what particular point-by-point
behavior in the IR region exists. For the analytically continued correlator, this
is not important unless the contour crosses a nonanalytic region. Whatever sin-
gularities exist in the IR region (regions B, B′, or B′′ in Fig. 2), the contour
includes them. The resummation on the contour is explicitly perturbative. For
resummation on the cut the extrapolation of the running of the coupling constant
to the IR region is crucial since one has to interpret integration over IR region.
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Fig. 2. Contours in the complex plane with a ˇxation in the region A, taking into account
possible occurrences of singularities. The ˇgure part in the left-hand side shows the
standard circle path which circumvents the singular region B, while the occurrence of
other singularity regions as discussed in the text (regions B′ and B′′) may lead to different
possibilities for choosing a path (Ca, Cb, Cc). The path Cd crosses the singularity region
and, therefore, cannot be used from the perturbation theory point of view

Formal manipulations with t = β0α(M2
τ ) ln (M2

τ /s) give

M2
τ∫

0

α(s) ds =

M2
τ∫

0

α(M2
τ ) ds

1 + β0α(M2
τ ) ln (s/M2

τ )
=

M2
τ

β0

∞∫
0

e−t/β0α(M2
τ ) dt

1 − t
. (57)

All expressions are not well-deˇned from the beginning, the third form being a
Borel representation. The problem can be reformulated as a divergence of the
asymptotic series. Indeed, by expanding the expression for the running coupling
under the integration sign in a PT series, one has

M2
τ∫

0

α(s) ds =
∑

n

n!
(

β0α(M2
τ )

π

)n

. (58)

The summation of the series in Eq. (58) is related to the interpretation of the
integral. Therefore, an integrable behavior of the coupling constant at small s
offers a recipe of the summation of the asymptotic series. This solution is strongly
model-dependent because the extrapolation of the evolution into the IR region is
essentially arbitrary. The explicit form of the extrapolation in Eq. (46) gives an
extrapolation motivated by analytic continuation. It can also be considered as a
special change of the renormalization scheme [59]. Indeed, for the coupling aM

with the evolution given in Eq. (51), one obtains an IR ˇxed point. If the analytic
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moments are deˇned simply by

manal
00 =

M2
τ∫

0

σc(s) ds

M2
τ

, (59)

without the negative part of the spectrum that emerges in the exact treatment
of quantities originally deˇned in the Euclidean domain, then one relates these
moments to the moments on the contour by the relation

manal
00 = − 1

β0
e−π/β0ατ + m00, (60)

which contains explicitly ®nonperturbative¯ term.
The question of uniqueness of resummation is important. However, it is only

relevant if many terms of PT expansion are known. It happens that the very
uniqueness can be useful for multiloop computations [72,73]. Note that it is also
important to have examples of high PT orders behavior in simple QFT models
as unique record-breaking computations show [74,75] or in some particular cases
as just a good laboratory for checking the techniques [76Ä78]. The methods are
also applied in some exotic areas as nonlinear sigma model, topological theories,
SUSY [79].

5. SUMMARY

We have reviewed some ways of interpreting the PT series for describing
τ -decay observables. Experimental data are very precise and theory matches
it by record numbers of PT terms. High orders of PT are available for many
cases, which allows both description of data and extraction of the parameters of
the theory with high accuracy. However, PT series converge slowly, requiring
improvement that can be achieved through: i) manipulating with schemes for close
observables avoiding artiˇcial intermediaries as MS quantities; ii) resummation of
different kinds; iii) not using unnecessary expansions Å treating polynomials as
compact expressions; and some others that you name. This richness is available
due to RG properties, which allows one to control scaling behavior and invariance
of the theory.

Acknowledgements. A.A. P. acknowledges the partial support by the
Russian Foundation for Basic Research, grant 11-02-00112-a.

APPENDIX

Phenomenology of hadronic τ decays is contained in the correlator of weak
currents jW

μ (x) = cos (θC) ūγμ(1 − γ5) d + sin (θC) ūγμ(1 − γ5)s

i

∫
〈T jW

μ (x)jW+
ν (0)〉 eiqx dx = (qμqν − q2gμν)Πhad(q2)
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with ρ(s) = Im Πhad(s + i0)/π and

Πhad(q2) =
∫

ρ(s) ds

s − q2
.

Total τ -lepton rate

RτS=0 =
Γ(τ → HS=0ν)

Γ(τ → lν̄ν)
∼

M2
τ∫

0

(
1 − s

M2
τ

)2 (
1 +

2s

M2
τ

)
ρ(s) ds

is a useful observable that is experimentally measured with high precision. One
considers moments of the spectral density of the form

Mkl =
(k + l + 1)!

k!l!

M2
τ∫

0

(
1 − s

M2
τ

)k (
s

M2
τ

)l
ρ(s) ds

M2
τ

≡ 1 + mkl,

which contain information about the hadronic spectral density ρhad(s) since
ρhad(s) itself is a distribution. The function ρ(s) is related to Adler's func-
tion D(Q2):

D(Q2) = −Q2 d

dQ2
Π(Q2) = Q2

∫
ρ(s) ds

(s + Q2)2
,

where Q2 = −q2 and D(Q2) is computable in PT. In the massless limit, PT
expression for Adler's function reads

D(Q2) = 1 + as + k1a
2
s + k2a

3
s + k3a

4
s + O(a5

s)

with as = αs(Q2)/π, and in the MS scheme

k1 =
299
24

− 9ζ(3), k2 =
58057
288

− 779
4

ζ(3) +
75
2

ζ(5), (61)

while k3 = 49.08 [38,40]. The correction to the total width δP is

δth
P = as + 5.2023a2

s + 26.366a3
s + (78.003 + 49.08)a4

s + O(a5
s), (62)

which corresponds to the experimental value δexp = 0.216± 0.005.
The renormalization group equation for a(μ2) reads

μ2 da

dμ2
= β(a) = −a2(β0 + β1a + β2a

2 + β3a
3 + . . .) (63)
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with

β0 =
9
4
, β1 = 4, β2 =

3863
384

, β3 =
140599
4608

+
445
32

ζ(3) (64)

for Nc = nf = 3 [48,80].
The coefˇcients fin are

f0n = Ĩ(0, n), f1n = β0Ĩ(1, n), f2n = β2
0(Ĩ(2, n) + ρ1Ĩ(1, n)),

f3n = β3
0

(
Ĩ(3, n) +

(
Iτ (2) − Iτ (1)2 − 1

3
π2

)
Ĩ(1, n) +

5
2
ρ1Ĩ(2, n) + ρ2Ĩ(1, n)

)
,

f4n = β4
0

(
Ĩ(4, n) − 3

(
Iτ (2) − Iτ (1)2 − 1

3
π2

)
Ĩ(2, n)+ (65)

+ 2(Iτ (3) − 3Iτ (1)Iτ (2) + 2Iτ (1)3)Ĩ(1, n)+

+ ρ1

(
13
3

Ĩ(3, n) + 5
(

Iτ (2) − Iτ (1)2 − 1
3
π2

)
Ĩ(1, n)

)
+

+ 3ρ2Ĩ(2, n) + ρ3Ĩ(1, n)
)

with

I(m, n) =
m!

(n + 1)m
, Iτ (m) = 2I(m, 0) − 2I(m, 2) + I(m, 3),

(66)

I(m, n) = I(m) +
m∑

p=0

(
m

p

)
Iτ (p) Ĩ(m − p, n).

The ρi are scheme-independent quantities given by

ρ1 =
β1

β2
0

, ρ2 =
1
β3

0

[
β2 − β1k1 + β0(k2 − k2

1)
]
,

(67)

ρ3 =
1
β4

0

[
β3 − 2β2k1 + β1k

2
1 + 2β0(k3 − 3k1k2 + 2k3

1)
]
.
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