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A semiclassical theory of linear response in ˇnite Fermi systems, based on the Vlasov equation,
and its applications to the study of isoscalar vibrations in heavy nuclei are reviewed. It is argued
that the Vlasov equation can be used to study the response of small quantum systems like (heavy)
nuclei in regimes for which the ˇnite size of the system is more important than the collisions between
constituents. This requires solving the linearized Vlasov equation for ˇnite systems, however, in this
case the problem of choosing appropriate boundary conditions for the �uctuations of the phase-space
density is nontrivial. Calculations of the isoscalar response functions performed by using different
boundary conditions, corresponding to ˇxed and moving nuclear surface, are compared for different
multipoles and it is found that, in a sharp-surface model, the moving-surface boundary conditions
give better agreement with experiment. The semiclassical strength functions given by this theory are
strikingly similar to the results of analogous quantum calculations, in spite of the fact that shell effects
are not included in the theory. This happens because of a well-known close relation between classical
trajectories and shell structure.

‚ ¤ ´´μ³ μ¡§μp¥ p ¸¸³ Ép¨¢ ¥É¸Ö ¶μ²Ê±² ¸¸¨Î¥¸± Ö É¥μp¨Ö ²¨´¥°´μ£μ μÉ±²¨±  ±μ´¥Î´ÒÌ
Ë¥p³¨-¸¨¸É¥³, ±μÉμp Ö μ¸´μ¢ ´  ´  Êp ¢´¥´¨¨ ‚² ¸μ¢ , ¨ ¥e ¶p¨³¥´¥´¨Ö ± ¨§ÊÎ¥´¨Õ ¨§μ¸± -
²Öp´ÒÌ ±μ²¥¡ ´¨° ÉÖ¦¥²ÒÌ Ö¤¥p. �μ± § ´μ, ÎÉμ Êp ¢´¥´¨¥ ‚² ¸μ¢  ³μ¦¥É ¡ÒÉÓ ¨¸¶μ²Ó§μ¢ ´μ
¤²Ö ¨§ÊÎ¥´¨Ö μÉ±²¨±  ´¥¡μ²ÓÏ¨Ì ±¢ ´Éμ¢ÒÌ ¸¨¸É¥³, É ±¨Ì ± ± (ÉÖ¦¥²Ò¥) Ö¤p , ¢ É¥Ì ¸²ÊÎ ÖÌ,
±μ£¤  ±μ´¥Î´Ò° p §³¥p ¸¨¸É¥³Ò Ö¢²Ö¥É¸Ö ¡μ²¥¥ ¢ ¦´Ò³, Î¥³ ¸Éμ²±´μ¢¥´¨Ö ³¥¦¤Ê ¥e Ô²¥³¥´-
É ³¨. „²Ö ÔÉμ£μ ´¥μ¡Ìμ¤¨³μ p¥Ï¨ÉÓ ²¨´¥ p¨§μ¢ ´´μ¥ Êp ¢´¥´¨¥ ‚² ¸μ¢  ¤²Ö ±μ´¥Î´ÒÌ ¸¨¸É¥³.
�¤´ ±μ ¢ ÔÉμ³ ¸²ÊÎ ¥ ¢μ§´¨± ¥É ¢μ¶pμ¸ μ ¢Ò¡μp¥ ¶μ¤Ìμ¤ÖÐ¨Ì £p ´¨Î´ÒÌ Ê¸²μ¢¨° ´  Ë²Ê±ÉÊ Í¨¨
¶²μÉ´μ¸É¨ Ë §μ¢μ£μ ¶pμ¸Ép ´¸É¢ . �pμ¢¥¤¥´μ ¸p ¢´¥´¨¥ p ¸Î¥Éμ¢ ¨§μ¸± ²Öp´ÒÌ ³Ê²ÓÉ¨¶μ²Ó´ÒÌ
ËÊ´±Í¨° μÉ±²¨± , ±μÉμpÒ¥ ¢Ò¶μ²´¥´Ò ¸ ¶μ³μÐÓÕ p §´ÒÌ £p ´¨Î´ÒÌ Ê¸²μ¢¨°, ¸μμÉ¢¥É¸É¢ÊÕ-
Ð¨Ì Ë¨±¸¨pμ¢ ´´μ° ¨ ¶μ¤¢¨¦´μ° Ö¤¥p´μ° ¶μ¢¥pÌ´μ¸É¨. “¸É ´μ¢²¥´μ, ÎÉμ ¢ ³μ¤¥²¨ ¸ p¥§±μ°
¶μ¢¥pÌ´μ¸ÉÓÕ £p ´¨Î´Ò¥ Ê¸²μ¢¨Ö ´  ¶μ¤¢¨¦´μ° ¶μ¢¥pÌ´μ¸É¨ ¤ ÕÉ ²ÊÎÏ¥¥ ¸μ£² ¸¨¥ ¸ Ô±¸¶¥p¨-
³¥´Éμ³. �μ²Ê±² ¸¸¨Î¥¸±¨¥ ¸¨²μ¢Ò¥ ËÊ´±Í¨¨, ¶μ²ÊÎ¥´´Ò¥ ¢ ¶p¥¤²μ¦¥´´μ° É¥μp¨¨, ¶μp §¨É¥²Ó´μ
¶μÌμ¦¨ ´  ´ °¤¥´´Ò¥ ¢  ´ ²μ£¨Î´ÒÌ ±¢ ´Éμ¢ÒÌ p ¸Î¥É Ì, ´¥¸³μÉpÖ ´  Éμ, ÎÉμ μ¡μ²μÎ¥Î´Ò¥ ÔË-
Ë¥±ÉÒ ´¥ ÊÎ¨ÉÒ¢ ÕÉ¸Ö ¢ ¤ ´´μ° É¥μp¨¨. �Éμ μ¡ÑÖ¸´Ö¥É¸Ö ´ ²¨Î¨¥³ É¥¸´μ° ¢§ ¨³μ¸¢Ö§¨ ³¥¦¤Ê
±² ¸¸¨Î¥¸±¨³¨ Ép ¥±Éμp¨Ö³¨ ¨ μ¡μ²μÎ¥Î´μ° ¸ÉpÊ±ÉÊpμ°.

INTRODUCTION

The Landau kinetic equation for Fermi liquids [1,2] contains some important
differences when compared to the classical Boltzmann equation for a dilute gas,
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one of them is the presence of an effective mean-ˇeld term. Thus, in Landau's
approach, at least a part of the force which is exerted on a particle by the other
constituents of a many-body system can be approximated by an effective mean
ˇeld. Another important feature of the Landau kinetic equation is the introduction
of an effective mass for quasiparticles, however here we neglect the difference
between bare and effective mass. Landau's kinetic equation allows also for a
collision term which, nonetheless, in some cases may be neglected (see, for
example, Sec. 4 of [3]). When this is done, we are dealing with a collisionless
kinetic equation in the mean ˇeld approximation. Such an approximation had been
considered long ago by Jeans (who gave the credit to Boltzmann) in the context
of stellar dynamics [4] and later by Vlasov in that of plasma physics [5] . Here
we follow the use that has become common both in plasma and in nuclear physics
and refer to the collisionless kinetic equation in the mean ˇeld approximation as
the Vlasov equation (see [6] for a discussion of historical priorities).

Kirzhnitz and collaborators [7] extended the approach to nonhomogeneous
systems and used it to study the possibility of collective excitations in the electron
cloud of heavy atoms. They pointed out that the main difˇculty arising in ˇnite
systems concerns the boundary conditions to be imposed on the �uctuations
of the phase-space density. Moreover, these authors also derived an interesting
expression for the polarization propagator determining the linear response of these
systems. Unfortunately, the practical usefulness of this expression is limited to
rather special systems in which the constituents move along closed orbits.

Another attempt to study the dynamic response of inhomogeneous Fermi
systems was limited to one-dimensional problems [8].

Bertsch [9] argued that the Vlasov equation could be used as a starting point
for a semiclassical theory of giant resonances in heavy nuclei. He pointed out that,
in spite of being a classical equation of motion, this equation would not violate
the Pauli principle, at least in a semiclassical sense. This is a consequence of the
Liouville theorem. When applying this method to nuclei, however, one is faced
with the problem of ˇnite-size effects since a nucleon close to the Fermi surface
is more likely to reach the nuclear surface than to suffer a violent collision with
another nucleon. Therefore ˇnite-size effects become more important than the
collision integral and also in the case of nuclei it is reasonable to study the kinetic
equation in the mean-ˇeld (or Vlasov) approximation, at least as a ˇrst step.

Some remarkable progress on this problem has been made in the ˇeld of
galactic dynamics: Polyacenko and Shukhman [10] solved the linearized Vlasov
equation for ˇnite spherical systems in their study of the stability of collisionless
stellar systems. In this context one of the main problems is that of determin-
ing a stable equilibrium distribution of particles (stars). Small deviations from
the equilibrium distribution are characterized by eigenfrequencies that are purely
imaginary in the case of unstable systems. Their approach has found several
applications in the ˇeld [11Ä13].
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A similar solution of the linearized Vlasov equation for nuclear response has
been derived independently in [14]. This solution turns out to agree with that
of [10] and gives a reasonable description of giant resonances in heavy nuclei [15].

Abrosimov, Di Toro and Strutinsky [16] used the same approach within a
sharp-surface model in which the nuclear mean ˇeld is approximated by a square-
well potential and used also different (moving-surface) boundary conditions in
order to extend the approach of [14] to low-energy surface vibrations in heavy
nuclei.

This paper is a review of work done in the last ten years, based on the
approaches of [14] and [16]. In Sec. 1, both approaches are recalled, while in
Sec. 2 several applications of the theory to the study of isoscalar vibrations of
different multipolarity (monopole, dipole, quadrupole, octupole) in heavy nuclei
are discussed. Finally, in Sec. 3, conclusions are drawn. The two Appendices
contain some more technical material on the moving-surface response functions
and on the Fourier coefˇcients that replace the quantum matrix elements in our
semiclassical approach.

1. REMINDER OF FORMALISM

1.1. Smooth Surface. In our semiclassical approach we assume that a (heavy)
spherical nucleus in its ground state can be described by the following equilibrium
phase-space distribution:

f0(r,p) =
4

(2π�)3
ϑ(εF − h0(r,p)) = F (h0), (1)

where ϑ is the step function; εF is the Fermi energy, while

h0(r,p) =
p2

2m
+ V0(r) = ε (2)

is the quasiparticle energy and the equilibrium mean ˇeld V0(r) is assumed to be
spherical. In principle the mean ˇeld should be determined self-consistently as
(Hartree approximation)

V0(r) =
∫

dr′v(r, r′)�0(r′), (3)

where v(r, r′) is the effective interaction between quasiparticles and

�0(r) =
∫

dpf0(r,p) (4)

is the equilibrium density of the nucleus (for the sake of simplicity we do not take
into account explicitly the spin and isospin degrees of freedom since this would
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only complicate the formalism without posing any new conceptual difˇculty;
the statistical weight 4 in Eq. (1) accounts for these degrees of freedom). In
practice we shall use instead a phenomenological equilibrium mean ˇeld, which
can be either of the SaxonÄWoods shape or even a simple square-well potential of
radius R = 1.2A1/3 fm. For the square-well approximation, several expressions
can be evaluated analytically and this is one of the merits of our simpliˇed
approach. Note that, contrary to the standard Fermi liquid theory, our equilibrium
distribution (1) depends also on the space coordinate r.

Next we assume that at time t = 0 the system is subject to an external driving
ˇeld of the kind

V ext(r, t) = βδ(t)Q(r). (5)

Here β is a parameter determining the intensity of the external force, which is
applied only for a very short time around t = 0, as described by the Dirac δ
function, and Q(r) gives the space dependence of the external ˇeld. Typically
we shall be interested in the multipole response of order L, for which∗

Q(r) = rLYLM (r̂). (6)

The response of the system to an external force is described by the �uctuation of
the phase-space density deˇned by

f(r,p, t) = f0(r,p) + δf(r,p, t) (7)

or, equivalently, by its time Fourier transform

δf(r,p, ω) =
∫ ∞

−∞
dt eiωtδf(r,p, t). (8)

Since δf(r,p, t) vanishes for t < 0, we can suppose that ω has a vanishingly
small imaginary part iε to ensure the convergence of this integral when t → +∞.

The perturbed system is described by a time-dependent phase-space density
satisfying the mean-ˇeld (or Vlasov) kinetic equation

∂f

∂t
+ {f, h} = 0, (9)

where the braces are Poisson brackets. The time-dependent Hamiltonian h is
given by

h(r,p, t) = h0(r,p) + δh(r, t), (10)

with
δh(r, t) = V ext(r, t) + δV int(r, t). (11)

∗For compression modes we'll be interested also in Q(r) = rL+2YLM (r̂).
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This expression shows explicitly that the extra force acting on a particle in the
perturbed system has two components: one due to the external driving ˇeld Vext

and an additional one due to the change in the interaction with the surrounding
particles. This last term is given by

δV int(r, t) =
∫

dr′v(r, r′)
∫

dp′δf(r′,p′, t). (12)

If the external force is sufˇciently weak, the density �uctuation induced by
it is small and we can consider only terms that are linear in β. In this case the
�uctuation δf(r,p, t) satisˇes the linearized Vlasov equation

∂ δf

∂t
+ {δf, h0} + {f0, δh} = 0, (13)

or
∂ δf

∂t
+ {δf, h0} = −F ′(h0){h0, δh}. (14)

From the mathematical point of view, if the (r,p) variables are used,
this equation is a seven-dimensional differential equation (actually an integro-
differential equation because of Eq. (12)) containing partial derivatives with re-
spect to time and to the six variables ri and pi. The time derivative can be
eliminated by using the Fourier transform (8), while the properties of Poisson
brackets suggest that some simpliˇcation might be achieved simply by making
a change of variables to generalized coordinates and momenta. The new co-
ordinates should be chosen in such a way to include the maximum number of
constants of motion of the unperturbed Hamiltonian h0 so that the corresponding
variable will not contribute to the Poisson bracket. For motion in a central force
ˇeld a convenient set of generalized coordinates is (ε, λ, r, α, β, γ), where ε is
the particle energy (2); λ, the magnitude of its angular momentum; r, the radial
coordinate, and α, β, γ are the Euler angles associated with the rotation of the
frame of Cartesian coordinates necessary to align the z axis of the lab frame to
the particle angular momentum λ and the y axis of the lab frame with the r
vector specifying the instantaneous position of a particle with respect to the force
centre (see Fig. 1).

Since four of the six new coordinates are constants of the motion, Eq. (14)
simpliˇes considerably and becomes

∂ δf

∂t
+

∂ δf

∂r
ṙ +

∂ δf

∂γ
γ̇ = −F ′(ε)

[
∂ δh

∂r
ṙ +

∂ δh

∂γ
γ̇

]
. (15)

By using

γ̇ =
λ

mr2
, (16)

ṙ = ±vr(ε, λ, r), (17)
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Fig. 1. Angular elements of the orbit. For a particle moving in a central force ˇeld, the
angles α and β are constant

with

vr(ε, λ, r) =

√
2
m

[
ε − V0(r) −

λ2

2mr2

]
(18)

the magnitude of the radial velocity, we obtain

−iωδf±vr(ε, λ, r)
∂ δf

∂r
+

λ

mr2

∂ δf

∂γ
=F ′(ε)

[
±vr(ε, λ, r)

∂ δh

∂r
+

λ

mr2

∂ δh

∂γ

]
(19)

for the Fourier-transformed linearized Vlasov equation.

This equation still contains partial derivatives with respect to the two time-
dependent variables r and γ, but the derivative with respect to γ can be eliminated
by means of an appropriate partial-wave expansion. The usual partial-wave ex-
pansion

δf(r,p, ω) =
∑
LM

δfLM (r,p, ω)YLM (ϑ, ϕ), (20)

where (ϑ, ϕ) are the polar angles of the vector r, is a ˇrst step in this direction, but
it does not solve the problem since the coefˇcients δfLM(r,p, ω) still depend on
the direction of the vector p, however the following well-known transformation
property of the spherical harmonics YLM (ϑ, ϕ) under the rotation speciˇed by
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the Euler angles α, β, γ can help us (see, e.g., ([17, p. 28])∗:

YLM (ϑ, ϕ) =
L∑

N=−L

(
DL

MN (αβ, γ)
)∗

YLN (ϑ′, ϕ′). (21)

In the new reference frame the particle is on the y axis, so ϑ′ = π/2 and
ϕ′ = π/2 and the only time-dependent angle on the right-hand side of Eq. (21)
is γ. The functions DL

MN (αβ, γ) are the coefˇcients of the rotation matrices and
their explicit γ dependence, of the kind e−iNγ , can be exploited to eliminate the
γ derivative in Eq. (19), giving the following one-dimensional equations:

∂

∂r
δfL±

MN ∓ AN δfL±
MN = BL±

MN , (22)

with

AN (ε, λ, r, ω) =
iω

vr(ε, λ, r)
− iN

vr(ε, λ, r)
λ

mr2
(23)

and

BL±
MN (ε, λ, r, ω) = F ′(ε)

[
∂

∂r
± iN

vr(ε, λ, r)
λ

mr2

]
[βQLM (r) + δV int

LM (r, ω)],

(24)
for the coefˇcients δfL±

MN (ε, λ, r, ω) of the expansion∗∗

δf(r,p, ω) =
∑

LMN

[δfL+
MN (ε, λ, r, ω)θ(pr) + δfL−

MN (ε, λ, r, ω)θ(−pr)]×

×
(
DL

MN (αβ, γ)
)∗

YLN

(π

2
,
π

2

)
. (25)

The functions QLM (r) and δV int
LM (r, ω) in Eq. (24) are the coefˇcients of a mul-

tipole expansion similar to (20) for the external driving ˇeld and for the induced
mean-ˇeld �uctuation, respectively. In Eq. (25) instead, the θ functions are the
usual step function θ(x) = 1 for x > 0 and θ(x) = 0 otherwise, while pr is the
radial component of the particle momentum: pr = ±mvr.

Thus, by making an appropriate change of variables (and by taking the
time Fourier transform), the initial seven-dimensional differential equation (14)
has been reduced to the system of two (coupled) one-dimensional differential
equations (22). These two equations, involving the distributions δf+ and δf−

∗In this rather technical aspect the derivation of [14] differs by that of [10], which is less
straightforward (cf. also [11]).

∗∗Note that, contrary to what is done in Ref. 14, here the factor YLN (π/2, π/2) is not included
in our deˇnition of the coefˇcients δfL±

MN .
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of particles with both signs of the radial velocity, are coupled by the mean-ˇeld
�uctuation, as shown explicitly by the following expression:

δV int
LM (r, ω) =

=
8π2

2L + 1

L∑
N=−L

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2 ∫
dε

∫
dλλ

∫
dr′

vr(ε, λ, r′)
vL(r, r′)×

× [δfL+
MN (ε, λ, r′, ω) + δfL−

MN (ε, λ, r′, ω)]. (26)

For the most effective interactions vL(r, r′), because of this coupling, the solution
of Eq. (22) can only be given in implicit form, however, an explicit solution can
be obtained if we neglect the term δV int

LM (r, ω) in Eq. (24). Following Ref. 14, we
refer to this as the zero-order approximation and recall here the solution details.

In order to solve Eq. (22), we must ˇrst specify the boundary conditions
satisˇed by δf+(r) and δf−(r) at the turning points r1 and r2. The boundary
conditions used in [14] were:

δfL+
MN (ε, λ, r1, ω) = δfL−

MN (ε, λ, r1, ω), (27)

δfL+
MN (ε, λ, r2, ω) = δfL−

MN (ε, λ, r2, ω), (28)

their physical meaning is that, at the turning points the radial motion of the
particles simply reverses. For the square-well potential, the condition at the outer
turning point implies a mirror re�ection of the nucleons on the static equilibrium
nuclear surface. As we shall see, in the sharp-surface case there are reasons
for modifying this boundary condition, however for the moment we assume a
diffused surface and determine the solution of Eq. (22) by using the boundary
conditions (27) and (28). The solution can be written as (in slightly simpliˇed
notation)

δfL±
MN (ε, λ, r, ω) = e±iφN (r,ω)

[∫ r

r1

dr′BL±
MN (r′) e∓iφN (r′,ω) + C±(ε, λ, ω)

]
,

(29)
with

φN (r, ω) = −i

∫ r

r1

dyAN (y) = ωτ(r) − Nγ(r), (30)

τ(r) =
∫ r

r1

dr′
1

vr(ε, λ, r′)
, (31)

γ(r) =
∫ r

r1

dr′
λ

mr′2
1

vr(ε, λ, r′)
. (32)
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The functions C±(ε, λ, ω) play the role of integration constants and are de-
termined by the boundary conditions. The inner boundary condition (27) implies

C− = C+, (33)

while the outer boundary condition (28) implies

eiφN (r2,ω)

[∫ r2

r1

dr′BL+
MN (r′) e−iφN (r′,ω) + C+

]
=

= e−iφN (r2,ω)

[∫ r2

r1

dr′BL−
MN (r′) eiφN (r′,ω) + C+

]
. (34)

Deˇning

D±(ε, λ, ω) =
∫ r2

r1

dr′BL±
MN (r′) e−iφN (r′,ω) (35)

gives
e2iφN (r2,ω)[D+ + C+] = D− + C+, (36)

that is,

C+(ε, λ, ω) =
e2iφN (r2,ω)D+ − D−

1 − e2iφN (r2,ω)
= C−(ε, λ, ω). (37)

The most interesting property of the solution (29) is its pole structure in
the complex-ω plane, which is entirely determined by the poles of the functions
C±(ε, λ, ω), that is, by the vanishing of the denominator in Eq. (37). This happens
whenever 2φN (r2, ω) = n 2π, with integer n. This is the point where the ˇnite
size of the system plays a crucial role since the eigenfrequencies of the density
�uctuations in the zero-order approximation are determined by the condition

ω[2τ(r2)] − N [2γ(r2)] = n 2π, (38)

and the period of radial motion T (ε, λ) = 2τ(r2) depends on the size of the
system. For motion in a central potential, these eigenfrequencies are characterized
by the two integers n and N :

ωnN (ε, λ) = nω0 + Nωϕ, (39)

with

ω0(ε, λ) =
2π

T (ε, λ)
, (40)

ωϕ(ε, λ) =
γ(r2)
τ(r2)

(41)
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being the frequencies of radial and angular motion for a particle with energy ε
and angular momentum magnitude λ. The eigenfrequencies (39) can be related
to the difference of single-particle energy levels εnl in a central potential since,
for large quantum numbers ([18, p. 579]),

εn′l′ − εn′′l′′ ≈ (n′ − n′′)
∂ε

∂n
+ (l′ − l

′′
)
∂ε

∂l
= �ωn′−n′′ l′−l′′ . (42)

Thus, the integer n can be interpreted as the difference between radial quan-
tum numbers in a single-particle excitation; and the integer N , as the difference
between the corresponding orbital quantum numbers.

The time-dependent density �uctuations can be obtained from the functions
δfL±

MN (ε, λ, r, ω) by contour integration in the complex-ω plane. For the zero-
order �uctuations we obtain:

δf0L±
MN (ε, λ, r, t) = 0 for t < 0, (43)

=
1
2π

∫ +∞

−∞
dω e−iωtδf0L±

MN (ε, λ, r, ω) for t > 0, (44)

with

δf0L±
MN (ε, λ, r, ω) = −βF ′(ε)

∞∑
n=−∞

ωnN e±iφnN (r) QnN(ε, λ)
ω − ωnN + iε

, (45)

φnN (r) = ωnNτ(r) − Nγ(r) (46)

and

QnN (ε, λ) =
1

τ(r2)

∫ r2

r1

dr
QLM (r)
vr(ε, λ, r)

cos [φnN (r)]. (47)

This result is obtained from Eq. (29) by closing the integration path in the lower
part of the complex-ω plane in the integral (44). The coefˇcients (47) correspond
to the classical limit of the quantum matrix elements of the external ˇeld (5) [19].

Thus we have seen that, for a spherical nucleus, the linearized Vlasov equa-
tion can be solved explicitly in the approximation in which the mean-ˇeld �uc-
tuation is neglected. This zero-order solution can be used as a starting point for
solving also the more general problem in which the mean ˇeld �uctuation δV int

is taken into account. The zero-order solution is most conveniently expressed in
terms of a semiclassical propagator (obtained from Eq. (45), see [14]) which is
analogous to the quantum particle-hole propagator

D0
L(r, r′, ω) =

8π2

2L + 1

+∞∑
n=−∞

L∑
N=−L

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2 ∫
dεF ′(ε)

∫
dλλ×

× 1
T (ε, λ)

cos [φnN (r)]
r2vr(ε, λ, r)

ωnN

ωnN − (ω + iε)
cos [φnN (r′)]
r′2vr(ε, λ, r′)

. (48)
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Taking into account also the mean-ˇeld �uctuation (12) gives the collective re-
sponse of the system and leads, in general, to an integral equation which is
analogous to the RPA equation for the quantum propagators

DL(r, r′, ω) = D0
L(r, r′, ω) +

∫
dxx2

∫
dyy2D0

L(r, x, ω)vL(x, y)DL(y, r′, ω).

(49)
The only differences between the present expression and the quantum result are
that here the propagator D0 is given in semiclassical approximation and, of
course, the exchange (Fock) term is missing. The integral equation (49) can
be easily solved numerically (the zero-order propagator is actually simpler than
suggested by Eq. (48) since, for small values of ω, the inˇnite sum over n can
be approximated with a sum over a few terms around n = 0 with very good
accuracy). The collective (multipole) response function is then given by

RL(ω) =
∫

drr2

∫
dr′r′2QLM (r)DL(r, r′, ω)QLM (r′), (50)

with DL solution of (49), and the corresponding strength function by

SL(�ω) = − 1
π

ImRL(�ω) (51)

(for a spherical system the response is independent of M ).
However there is a special case in which also the collective solution of the

linearized Vlasov equation can be obtained explicitly. This happens if the inter-
action between particles is supposed to be of the separable multipoleÄmultipole
type:

v(r, r′) =
∑
LM

κLrLr′LYLM (̂r)Y ∗
LM (̂r′) (52)

and the external ˇeld is also of the multipole type (6). In this case Eqs. (49) and
(50) give immediately

RL(ω) =
R0

L(ω)
1 − κLR0

L(ω)
, (53)

with the zero-order response function R0
L(ω) given by

R0
L(ω) =

1
β

8π2

2L + 1

L∑
N=−L

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2 ∫
dε

∫
dλλ×

×
∫ r2

r1

dr
QLM (r)
vr(ε, λ, r)

[δf0L+
MN (ε, λ, r, ω) + δf0L−

MN (ε, λ, r, ω)]. (54)
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Moreover the �uctuation δf can also be obtained in an explicit form, like δf0.
For the separable interaction (52), Eq. (26) for the mean-ˇeld �uctuation gives

δV int
LM (r, ω) = βκLrLRL(ω), (55)

while Eq. (24) gives

BL±
MN (ε, λ, r, ω) = F ′(ε)

[
∂

∂r
± iN

vr(ε, λ, r)
λ

mr2

]
[βrL + βκLrLRL(ω)], (56)

and, from Eq. (22), we get δfL±
MN (ε, λ, r, ω) = δf0L±

MN (ε, λ, r, ω)[1 + κLRL(ω)]
or, by using Eq. (53),

δfL±
MN (ε, λ, r, ω) =

δf0L±
MN (ε, λ, r, ω)

1 − κLR0
L(ω)

. (57)

1.2. Action-Angle Variables. Up to now we have assumed a spherically
symmetric equilibrium mean ˇeld, however the method outlined here for the
solution of the linearized Vlasov equation is valid also for a wider class of physical
systems. This method, which is based on the use of generalized coordinate and
momenta in order to simplify the Vlasov equation, can actually be used for all
systems which are described by an integrable equilibrium Hamiltonian h0(r,p).
Such a Hamiltonian includes also some deformed systems [20]. For integrable
systems, it is convenient to introduce action-angle variables (I,Φ) instead of
(r,p), since in this case the action variables Iα are constants of the motion, while
the angle variables Φα are linear functions of time (see, for example, Ref. [21,
p. 457]). An important property of these variables is that the motion is periodic
in the angle variables with period 2π. Consequently the ˇeld felt by a particle
that is moving along a trajectory determined by an integrable Hamiltonian can be
Fourier expanded as

V ext(r, ω) = β
∑
n

Qn(I) ein·Φ, (58)

and

δV int(r, ω) =
∑
n

δVn(I, ω) ein·Φ, (59)

where n is a three-dimensional vector with integer components.
The phase-space-density �uctuation can also be expanded in the same way:

δf(r,p, ω) =
∑
n

δfn(I, ω) ein·Φ, (60)
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and the linearized Vlasov equation gives the following equation for the coefˇcients
δfn(I, ω):

δfn(I, ω) = F ′(ε)
[
βQn(I) + δV int

n (I, ω)
] n · ω
n · ω − (ω + iε)

, (61)

where the vector ω has components

ωα =
∂h0(I)
∂Iα

. (62)

Again, Eq. (61) gives only an implicit solution of the Vlasov equation, since
the mean-ˇeld �uctuation δV int depends on δf . If the term δV int is neglected,
then Eq. (61) is an explicit solution that, in the case of spherical systems, agrees
with the zero-order solution (45). Generally speaking, the vector ω has three
components, but in spherical systems there are only two basic eigenfrequencies:
ω0 and ωϕ. This is because spherical systems are over-integrable and this implies
that one of the angle variables is also a constant of the motion. The coefˇcients
Qn(I) in Eq. (61) are given by

Qn(I) =
1

2π3

∫
dΦ e−in·ΦQ(r) (63)

and correspond to the quantum matrix elements of the operator Q(r).
1.3. Sharp and Moving Surface. With the aim of establishing a link be-

tween the present microscopic theory of nuclear excitations and the macroscopic
description given by the liquid-drop model (see, e.g., [18, Appendix 6A]) the
authors of [16] studied in detail the model in which the equilibrium mean ˇeld is
approximated by a square-well potential: V0(r) = −V0ϑ(R − r). They noticed
that in this case the boundary condition (28) corresponds to a mirror re�ection of
nucleons when they reach the static nuclear surface at r = R. With that bound-
ary condition the sharp-surface model allows only for compressional excitations,
while a liquid drop has both surface and compression modes. They argued that, in
order to allow also for a microscopic description of surface modes, in the sharp-
surface case, the boundary condition (28) should be modiˇed and they proposed
to replace it with the following (moving-surface) boundary condition:

δf̃L+
MN (ε, λ, R, ω) = δf̃L−

MN (ε, λ, R, ω) + F ′(ε)2mvr(ε, λ, R)iωδRLM (ω). (64)

Whenever the same symbol is used, we put a tilde over the quantities evaluated
with the moving-surface boundary condition (64), to distinguish them from the
corresponding quantities satisfying the ˇxed-surface boundary condition (28). The
physical picture behind this new boundary condition still corresponds to a mirror
re�ection of nucleons at the nuclear surface r = R, but in a reference frame that
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is moving in the radial direction at a speed Ṙ(ϑ, ϕ, t). The radial momentum
transferred by the moving surface to the impinging nucleon will differ from that
occurring in a collision with the static surface and this modiˇes the momentum
distribution of nucleons according to (64), in the ˇrst approximation. Formally,
in this approach the nuclear surface is allowed to vibrate (for t > 0) according to
the usual liquid-drop model expression

R(ϑ, ϕ, t) = R +
∑
LM

δRLM (t)YLM (ϑ, ϕ), (65)

giving

Ṙ(ϑ, ϕ, t) =
∑
LM

δṘLM (t)YLM (ϑ, ϕ) (66)

for the surface speed and

Ṙ(ϑ, ϕ, ω) =
∑
LM

−iωδRLM(ω)YLM (ϑ, ϕ) (67)

for its time Fourier transform, thus leading to the extra term in Eq. (64).
The new collective coordinates δRLM (ω) are still to be determined. In [16]

this has been done by recalling that in the liquid-drop model a change in the
curvature radius of the surface results in a change of pressure given by (see
Eq. (6A-57) of [18])

δP(R, θ, ϕ, ω) =
∑
LM

CL
δRLM (ω)

R4
YLM (θ, ϕ), (68)

with the restoring force parameter CL that can be related to the phenomenologi-
cally determined surface tension parameter σ ≈ 1 MeV · fm−2. If the Coulomb
repulsion between protons is neglected, this relation is simply

CL = σR2(L − 1)(L + 2), (69)

while taking into account also the Coulomb interaction gives an additional contri-
bution to CL (see [18, p. 660]). The pressure �uctuation (68) can also be related
to the appropriate component of the pressure tensor (generalized to Fermi liquids,
see [22, Sec. 74])

δP(R, θ, ϕ, ω) =
∫

dpmv2
r

(
δf̃(R,p, ω) − F ′(ε)δṼ int(R, ω)

)
. (70)

By equating the pressure �uctuations given by Eqs. (68) and (70), the collective
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coordinates δRLM (ω) can be related to the phase-space-density �uctuation:

δRLM (ω) =
8π2

2L + 1
R2

CL

L∑
N=−L

∣∣∣YLN (
π

2
,
π

2
)
∣∣∣2 ∫

dε

∫
dλλmvr(ε, λ, R)×

×
[
δf̃L+

MN (ε, λ, R, ω) + δf̃L−
MN (ε, λ, R, ω) − 2F ′(ε)δṼ int

LM (R, ω)
]
. (71)

The internal part of the mean-ˇeld �uctuation δṼ int
LM (r, ω) in the moving-surface

case will be speciˇed better in Appendix A. This can be done most easily by
assuming a separable interaction of the kind (52). We have already seen that such
an effective interaction leads to simple analytical expressions for the multipole
response function and for the solution of the linearized Vlasov equation with
ˇxed-surface boundary conditions. The same happens also in the moving-surface
case, although the ˇnal expressions are somewhat more involved. Since the
explicit derivation of the moving-surface multipole response function is rather
lengthy, we report here only the ˇnal result

R̃L(ω) = RL(ω)−

− 1
1 − κLR0

L(ω)

[
χ0

L(ω) +
3
4π

AκLRLR0
L(ω)

]2

[CL − χL(ω)][1 − κLR0
L(ω)] + κL

[
χ0

L(ω) +
3
4π

ARL

]2 ,

(72)

and outline it in Appendix A. The response function RL(ω) in the equation
above is still that given by Eq. (53), while the functions χL(ω) and χ0

L(ω) are
deˇned as∗

χL(ω) =
8π2

2L + 1
R2

L∑
N=−L

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2×
×

∫
dε

∫
dλλ2F ′(ε) cot [φN (R, ω)][mvr(ε, λ, R)]2ω, (73)

and

χ0
L(ω) =

1
β

8π2

2L + 1
R

L∑
N=−L

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2×
×

∫
dε

∫
dλλmvr(ε, λ, R)

[
δf0L+

MN (ε, λ, R, ω) + δf0L−
MN (ε, λ, R, ω)

]
. (74)

∗In Refs. 23, 24, a different normalization of χ0
L has been used.
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2. ISOSCALAR EXCITATIONS IN HEAVY NUCLEI

In the remaining part of this paper we review some applications of the theory
outlined in the ˇrst part to the study of isoscalar nuclear response. Our approx-
imation for the mean ˇeld (a square-well potential) is not particularly realistic
since it neglects the surface diffusion and the assumed residual interaction of
the multipoleÄmultipole type is also rather special, however these approximations
have the advantage of leading to simple analytical formulae for the nuclear re-
sponse functions. Our semiclassical approach shows that some features of the
nuclear response that are usually ascribed to quantum effects can be understood
in terms of classical concepts like nucleon trajectories. The correspondence be-
tween shell effects (not included in our treatment) and the properties of classical
trajectories helps one to shed a new light on the nuclear response at low energy.

Our starting point is the zero-order response function (54). By using the
explicit expression (45) of the phase-space-density �uctuations, with F ′(ε) =

− 4
(2π)3

δ(εF − ε), this equation gives

R0
L(s) =

9A

8π

R2L

εF

L∑
N=−L

C2
LN

+∞∑
n=−∞

∫ 1

0

dxx2 snN (x)
s − snN(x) + iε

(
Q

(L)
nN(x)
RL

)2

,

(75)
with x = sin α, cosα = λ/(pF R), s = ω/(vF /R), vF = pF /m,

snN (x) =
nπ + Nα(x)

x
, (76)

Q
(k)
nN (x) =

2
T

∫ R

r1

dr
rk

vr(εF , λ, r)
cos [φnN (r)], (77)

and

C2
LN =

4π

2L + 1

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2. (78)

Instead of the frequency ω, we have introduced the dimensionless parameter s;
and instead of the particle angular momentum λ, the parameter x = sin α. The
Fourier coefˇcients (77) can be easily evaluated explicitly, the expressions needed
here are grouped together in Appendix B. In terms of the new dimensionless
variables, the auxiliary functions χ0

L and χL appearing in Eq. (72) read

χ0
L(s) =

9A

4π
RL

∑
nN

C2
LN

∫ 1

0

dxx2snN(x)
(−)nQ

(L)
nN(x)/RL

s + iε − snN (x)
(79)

and

χL(s) = −9A

2π
εF s

∑
nN

C2
LN

∫ 1

0

dxx2 1
s + iε− snN(x)

. (80)
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In the last equation we have used the pole expansion of the cotangent:

cot z =
+∞∑

n=−∞

1
z − nπ

.

2.1. Monopole Response. This channel corresponds to a compression mode.
For these modes the radial dependence of the external ˇeld is not given by
Eq. (6), but rather by

Q(r) = rL+2YLM (r̂). (81)

As a consequence the zero-order response function (75) will involve the Fourier

coefˇcients Q
(L+2)
nN (x) instead of Q

(L)
nN (x) and the same is true for the auxiliary

function χ0
L(s) in Eq. (79). Accordingly, the moving-surface response function

(72) is also slightly changed to

R̃L(ω) = RL(ω)−

− 1
1 − κLR0

L(ω)

[
χ0

L(ω) +
3
4π

AκLRL+2R0
L(ω)

]2

[CL − χL(ω)][1 − κLR0
L(ω)] + κL

[
χ0

L(ω) +
3
4π

ARL+2

]2 .

(82)

For L = 0 this expression gives the collective moving-surface strength func-
tion shown in Fig. 2 (solid curve, E = �ω). The collective strength function of
Fig. 2 has been calculated by assuming a residual interaction

vL=0(r, r′) = κL=0r
2r′2, (83)

with a value of κL=0 = −2 · 10−4 MeV · fm−4. This parameter has been de-
termined by ˇtting the experimental position of the giant monopole resonance
in 208Pb.

The dotted curve instead shows the zero-order strength function (proportional
to the imaginary part of the response function R0

L(ω), which is similar to the
quantum single-particle response function).

Finally, the dashed curve shows the collective moving-surface response given
by Eq. (82) with L = 0 and κL = 0. If κL = 0, the frequency of the collective
monopole vibration is determined by the solution of the equation

CL − χL(ω) = 0. (84)

It has already been pointed out in [16] that this approximation gives a very rea-
sonable description of the position (including the A dependence) of the isoscalar
giant monopole resonance in heavy nuclei.
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Fig. 2. Monopole strength function in three different approximations: zero-order (dotted
curve), collective with ˇnite value of κL (solid) and collective with κL = 0 (dashed).
Note the change in the vertical scale

Another interesting feature of the monopole response pointed out in [16] is
that the zero-order strength function vanishes for ω < πvF /R. As a consequence
of this fact, within this model, there is no Landau damping of the collective
monopole mode. This absence of Landau damping is in qualitative agreement
with the results of analogous quantum calculations [25,26]. The very small width
appearing in Fig. 2 is due to our use of a fnite value of the inˇnitesimal parameter
ε (for numerical reasons, we have used ε = 0.1 MeV).

We have checked numerically that the collective state shown in Fig. 2 ex-
hausts about 99% of the monopole energy-weighted sum rule, which is given
by [27] ∫ ∞

0

dE E S(E) =
3

10π

�
2

m
AR2. (85)

2.2. Dipole Response (Translation and Compression Modes). It is well
known that the mean-ˇeld approximation violates the translation invariance of the
nuclear Hamiltonian and that this results in the appearing of spurious strength
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in the isoscalar dipole response. Hence, the isoscalar dipole channel, excited by
the external ˇeld (6) with L = 1, is usually not interesting because it should
correspond to a simple translation of an unexcited nucleus, while in the mean-
ˇeld approximation this pure translation is replaced by a spurious excitation of the
nuclear centre-of-mass bound by an unphysical force. However the corresponding
compression mode, excited by the ˇeld

Q(r) = r3Y1M (̂r), (86)

has received considerable attention because of the possibility of obtaining from it
additional information about the compressibility of nuclear matter [28]. Since the
external ˇeld (86) can excite also the centre of mass, the problem of subtracting the
unwanted spurious strength from the corresponding response function has usually
been dealt with by using an ingenious trick due to Van Giai and Sagawa [29].
These authors suggested that, instead of studying the response to the external ˇeld
(86), one should look at the response to an effective external ˇeld of the kind

Qeff(r) = (r3 − ηr)Y1M (̂r), (87)

where η is a parameter determined by the condition that, under the action of the
external force, the centre of mass should remain at rest.

The moving-surface theory of [16] allows for a different approach to the
problem of evaluating the intrinsic response associated with the ˇeld (86). It is
clear from expression (69) of the restoring-force parameter CL that this parameter
vanishes for L = 1. This means that in this case there is no restoring force, hence
the moving-surface boundary condition seems to be able to readjust the translation
symmetry that is broken by the mean-ˇeld approximation. This statement can be
easily veriˇed by looking at the form taken by the response function (82) when the
residual interaction is neglected. If we put κL = 0 in Eq. (82), the moving-surface
response function becomes

R̃0
L=1(ω) = R0

1(ω) − [χ0
1(ω)]2

[−χ1(ω)]
, (88)

or (cf. Eq. (3.1) of Ref. 23)

R̃0
L=1(ω) =

3
4π

A

mω2
, (89)

which has the behavior expected for a free particle. Since this response function
has no poles for ω �= 0, it does not give spurious dissipation at positive ω.

The translation invariance of the model when the residual interaction is taken
into account is less obvious, however it has been shown in [23], by using sum rule
arguments, that no spurious strength is added to the zero-order intrinsic response
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even when a residual dipoleÄdipole interaction is included. Thus we are conˇdent
that the present semiclassical theory with moving-surface boundary conditions
correctly separates the intrinsic from the centre-of-mass excitations and do not
need to use the effective operator (87).

For the sake of simplicity, here we discuss in some detail only the zero-
order response, in which the residual interaction is neglected. This approximation
corresponds to treating the nucleus as a gas of noninteracting fermions conˇned
to a spherical cavity with perfectly re�ecting walls that are allowed to translate
freely. The residual interaction changes the compressibility of this nuclear �uid
and its effects on the response have been evaluated in Ref. 23.

We ˇrst need to give a slight generalization of the zero-order response func-
tion (75), by deˇning the functions

R0
L,jk(s) =

9A

16π

Rj+k

εF

L∑
N=−L

C2
LN×

×
+∞∑

n=−∞

∫ 1

0

dxx2snN (x)
(Q(j)

nN (x)/Rj)(Q(k)
nN (x)/Rk)

s − snN (x) + iε
. (90)

In terms of these new functions, the ˇxed-surface zero-order response to the
external ˇeld (86) is determined by the function R0

1,33(s), while R0
1,13(s) has a

direct physical interpretation as the displacement of the nuclear centre of mass
induced by the external ˇeld (86) [23]. Similarly R0

1,11(s) gives the response to
the ˇeld rY1M (̂r).

It has been shown in [23] that the (zero-order) moving-surface response
function for the ˇeld (86) can be written as

R̃0
1,33(s) = R̃0

cm(s) + R̃0
intr(s), (91)

with

R̃0
cm(s) =

3A

4π

R6

2εF

1
s2

(92)

and

R̃0
intr(s) = R0

1,33(s) −
3A

4π

R6

2εF

1
s2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −

[
1 − 1

2
s2

R0
1,13(s)
M1

13

]2

1 − 1
2
s2

R0
1,11(s)
M1

11

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (93)

The moments

Mp
jk =

∫ ∞

0

dssp

[
− 1

π
ImR0

1,jk(s)
]

(94)



COLLECTIVE MOTION IN FINITE FERMI SYSTEMS WITHIN VLASOV DYNAMICS 1363

are deˇned in terms of the generalized ˇxed-surface response functions (90) and

they can be easily evaluated, giving M1
11 =

1
3

9A

16π

R2

εF
and M1

13 = R2M1
11. An

essential property of the intrinsic response function (93) is that its limit for s → 0
is ˇnite, so it has no pole in ω = 0.

A properly normalized and energy-weighted strength function associated with
the intrinsic response function (93) is shown in Fig. 3. It is interesting to note

Fig. 3. Comparison of our energy-weighted strength function with data from Ref. 30. The
curve shows the strength function in the case of vanishing residual interaction, i.e., for a
conˇned Fermi gas with an incompressibility of K = 200 MeV

that the simple model used here qualitatively reproduces the experimental data
of [30], in particular the double-peak structure of the dipole compression mode.
Clearly at this level we can only hope in a qualitative agreement since the present
model has several unrealistic aspects (sharp surface, no residual interaction, etc.).
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2.3. Quadrupole Response. Figure 4 shows the quadrupole response function
given by Eq. (72) (solid curve) with the strength of the residual quadrupoleÄ
quadrupole interaction determined by [31]

κL=2 = −1.0 · 10−3 MeV · fm−4. (95)

The value of this parameter has been ˇxed by the requirement that the position
of the giant quadrupole resonance (GQR) in our hypothetical nucleus of A = 208

Fig. 4. Quadrupole strength function for a hypothetical nucleus of A = 208 nucleons. The
solid curve shows the moving-surface response, while the dashed curve gives the ˇxed-
surface response. The dotted curve shows the response in the zero-order approximation

nucleons agrees with the experimental position of the GQR in 208Pb. The obtained
value turns out to be about twice that given by the BohrÄMottelson prescription
[18, p. 509]. Taking into account the fact that our equilibrium mean ˇeld has
a different shape (square well rather than harmonic oscillator) and that we are
assuming a semiclassical framework, this kind of agreement looks reasonable.
While the position of the GQR is well reproduced by the appropriate value of
κ2, its width is severely underestimated by our theory. This is a well-known
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limit of all mean-ˇeld calculations in which the width is generated only by
Landau damping, including of a collision term in our kinetic equation would
increase the width of this resonance. It is interesting to compare the moving
surface response with the ˇxed-surface one (dashed curve in Fig. 4): contrary
to the ˇxed-surface response function, the moving surface response displays a
low-energy bump whose exact position is determined by the value of the surface
tension parameter σ of Eq. (69). Thus the moving-surface theory does reproduce
both systematic features of the quadrupole nuclear response that are the GQR
and the low-energy surface excitations. Quadrupole response functions calculated
for other values of A, corresponding to other medium-heavy spherical nuclei, are
qualitatively similar to the case shown in Fig. 4.

2.4. Octupole Response. For L = 3, Eq. (72) gives the moving-surface
collective octupole response function. A detailed study of this case has been
made in Ref. 24. It is interesting to look ˇrst at the ˇxed-surface zero-order
response.

Fig. 5. Semiclassical octupole strength function analogous to quantum single-particle
strength function. Calculations are for A = 208 nucleons in a square-well potential
of radius R = 1.2 A1/3 fm

It can be seen in Fig. 5 that, for A = 208, the single-particle octupole
strength is concentrated in two regions around 8 and 24 MeV. As pointed out
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already in [14], in this respect our semiclassical response is strikingly similar
to the quantum response, which is concentrated in the 1�ω and 3�ω regions.
This concentration of strength is quite remarkable because our static distribution,
which is given by Eq. (1), does not include any shell effect, however, because of
the close connection between shell structure and classical trajectories expressed
by Eq. (42), we still obtain a strength distribution that is very similar to the
quantum one.

The collective moving-surface octupole strength function is shown instead in
Fig. 6 (solid curve).

Fig. 6. The octupole strength function given by the moving-surface solution (72) (solid
curve) and the corresponding ˇxed-surface response (dashed curve)

Again we obtain a qualitative agreement with experiment and with the result
of analogous quantum calculations. Like for the quadrupole case, agreement with
experiment can be obtained with a residual interaction parameter about twice that
given by the BohrÄMottelson prescription. The rather broad double hump on the
low-energy side has been interpreted as a superposition of surface vibrations and
of the low-energy component of the giant octupole resonance. Within the present
semiclassical theory, it can be shown that, for L = 3, the parameters δRLM (t),
describing the octupole surface vibrations, approximately satisfy an equation of
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motion of the damped-oscillator kind [24]:

D3δR̈3M (t) + γ3δṘ3M (t) + C3δR3M (t) = 0. (96)

The coefˇcients D3, γ3, and C3 are easily evaluated, showing that the oc-
tupole surface oscillations described by Eq. (96) are overdamped. Another inter-
esting result of this semiclassical analysis concerns the shape stability of heavy
spherical nuclei against octupole-type deformation: within the present model the
spherical shape is stable.

CONCLUSIONS

The linearized Vlasov equation, that can be seen as a particular case of the
Landau kinetic equation for the phase-space-density �uctuations, gives a good
qualitative description of the low-energy isoscalar nuclear response of different
multipolarities. This collisionless equation, which has been initially derived for
other systems, can be applied also to nuclei because in nuclear matter the mean-
free-path of nucleons close to the Fermi surface is larger than the typical nuclear
dimensions. This fact has two consequences:

• the mean-ˇeld approximation is a reasonable one in the study of low-energy
nuclear response,

• ˇnite size effects are important and should be taken into account.
Hence, because of the interplay between nucleon mean-free-path and nuclear di-
mensions, the Vlasov equation can be used to study the nuclear response to a
weak driving ˇeld of long wavelength. Clearly in different physical situations,
like those realized in the collisions of heavy ions of intermediate or high energy,
collisions become more important and should be taken into account. Thus in nu-
clei ˇnite-size effects are more important at low energy, while collisions between
nucleons become more and more important with increasing energy.

As pointed out by Kirzhnitz and collaborators [7], in ˇnite systems, the
boundary conditions satisˇed by the �uctuations of the phase-space density be-
come essential. While in quantum mechanics these boundary conditions are au-
thomatically enforced by the requirement that the wave function of bound states
decreases exponentially outside the system, in the semiclassical kinetic-equation
approach there is no similar requirement and the boundary conditions satisˇed by
the phase-space-density �uctuations must be imposed by using some reasonable
criterion. Here we have studied the small �uctuations of the phase-space density
induced by applying a weak external driving force to spherical nuclei and have
assumed a sharp-surface model for the spatial density and mean ˇeld in heavy
nuclei. Then we have compared the experimental isoscalar strength functions
with those calculated by imposing two different kinds of boundary conditions on
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the phase-space-density �uctuations: ˇxed- and moving-surface boundary condi-
tions. On the whole we ˇnd a better qualitative agreement with experiment for
the moving-surface response.

As a ˇnal comment, we would like to add that the present semiclassical theory
can be applied also to other systems of many fermions in which it is important
to take into account the ˇnite size. Atomic clusters and magnetically trapped
droplets of fermions are interesting examples. Clearly, quantum calculations are
more appropriate, however it might be of some interest to see to what an extent
the quantum features stand on a classical ®skeleton¯, and this can be appreciated
most clearly within the present approach.

Appendix A
MOVING-SURFACE RESPONSE FUNCTION

In this Appendix we give a few more details on the derivation of the analytical
expression (72) for the multipole response function.

The solution δf̃L±
MN of the linearized Vlasov equation with the boundary

condition (64) can be written as (cf. Eq. (29))

δf̃L±
MN (ε, λ, r, ω) = e±iφN (r,ω)

[∫ r

r1

dr′B̃L±
MN (r′) e∓iφN (r′,ω)] + C̃±(ε, λ, ω)

]
(97)

with the functions B̃L±
MN given by an equation similar to (24)

B̃L±
MN (ε, λ, r, ω) = F ′(ε)

[
∂

∂r
± iN

vr(ε, λ, r)
λ

mr2

]
[βQLM (r) + δṼ int

LM (r, ω)]

(98)
and the functions C̃± given by

C̃±(ε, λ, ω) =
e2iφN (R,ω)D̃+ − D̃−

1 − e2iφN (R,ω)
+

+ F ′(ε)
1

sin [φN (R, ω)]
mvr(ε, λ, R)ωδRLM (ω). (99)

The mean-ˇeld �uctuation δṼ int
LM (r, ω) is a crucial quantity in our calcula-

tions. Usually phenomenological models that describe the physical properties of
the medium differ mainly in the assumptions made about this term. Our present
approach is no exception to this general rule and Eq. (72) has been derived by
assuming that

δṼ int
LM (r, ω) = βκLrLRV

L (ω), (100)
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with

RV
L (ω) =

1
β

∫
drr2rLδ�̃LM (r, ω), (101)

and

δ�̃LM (r, ω) =
8π2

2L + 1
1
r2

L∑
N=−L

∣∣∣YLN

(π

2
,
π

2

) ∣∣∣2×
×

∫
dε

∫
dλ

λ

vr(ε, λ, r)

[
δf̃L+

MN (ε, λ, r, ω) + δf̃L−
MN (ε, λ, r, ω)

]
. (102)

Function (101) is not the response function (72) because, as discussed in [23],
in the moving-surface case the response function should include an additional term
in order to take into account the shape changes, thus a more satisfactory deˇnition
of the multipole response function in the moving-surface case is (see also [32])

R̃L(ω) =
1
β

∫
drr2rLδ�̄LM (r, ω), (103)

with
δ�̄LM (r, ω) = δ�̃LM (r, ω) + �0δ(r − R)δRLM (ω), (104)

giving

R̃L(ω) = RV
L (ω) +

1
β

RL+2�0δRLM (ω). (105)

The response function (72) corresponds to (105), rather than to (101). The

equilibrium density �0 appearing in Eq. (104) is �0 =
2

3π2
(pF /�)3.

In order to obtain the explicit expression (72) of the response function (105),
we need the explicit expressions of the function RV

L (ω) and of the collective
coordinates δRLM (ω). For deriving these quantities, the moving-surface solution
(97) should be expressed in terms of RV

L (ω) and of δRLM (ω). By replacing the
mean-ˇeld �uctuation (100) into the quantities B̃L±

MN and C̃±, given by Eqs. (98)
and (99), and by inserting the resulting expressions into Eq. (97), the �uctuation
δf̃L±

MN can be written as

δf̃L±
MN (ε, λ, r, ω) = δf0L±

MN (ε, λ, r, ω)
[
1 + κLRV

L (ω)
]
+

+ F ′(ε)
e±iΦN (r,ω)

sin [ΦN (R, ω)]
mvr(ε, λ, R)ωδRLM (ω), (106)

with the zero-order solution δf0L±
MN given by Eq. (45). Now, by inserting the

solution (106) into Eqs. (101) and (71), we obtain a system of algebraic equations
for the functions RV

L (ω) and δRLM (ω), that can be written as

RV
L (ω) = R0

L(ω)
[
1 + κLRV

L (ω)
]
− 1

β

[
χ0

L(ω) + �0R
L+3

]δRLM (ω)
R

(107)
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and

δRLM (ω) =
1

CL

{
βRχ0

L(ω)[1 + κLRV
L (ω)]+

+ χL(ω)δRLM (ω) + βκL�0R
L+4RV

L (ω)
}

, (108)

with the functions R0
L(ω), χ0

L(ω), and χL(ω) given by Eqs. (54), (79), and (80),
respectively. Solving the system (107), (108) gives the explicit expressions of
RV

L (ω) and δRLM (ω), which read

RV
L (ω) = RL(ω) − 1

β

χ0
L(ω) + �0R

L+3

1 − κLR0
L(ω)

δRLM (ω)
R

(109)

and

δRLM (ω)
R

= β
χ0

L(ω) + κL�0R
L+3R0

L(ω)
[CL − χL(ω)][1 − κLR0

L(ω)] + κL[χ0
L(ω) + �0RL+3]2

. (110)

The ˇxed-surface collective response function RL(ω) appearing in Eq. (109) is
given by Eq. (53). Finally, by inserting Eqs. (109) and (110) into the response

function (105) and taking into account that �0R
3 =

3
4π

A, we ˇnd Eq. (72).

Appendix B
FOURIER COEFFICIENTS

In this Appendix we collect the expressions of the integrals (77) needed here.
Since the spherical harmonics in (78) vanish unless N has the same parity as L,
we only need the corresponding integrals. Normally we need the coefˇcients with
k = L, however for compression modes we also need k = L+2. The coefˇcients
involved in the monopole response are

L = 0, N = 0,

Q
(0+2)
n0 (x) =

2
T

∫ R

r1

dr
r2

vr(εF , λ, r)
cos [φnN (r)], (111)

= (−)nR2 2
s2

nN (x)
for n �= 0,

= R2

(
1 − 2

3
x2

)
for n = 0,

while for the quadrupole response they are:

L = 2, N = 0 same as monopole,
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and
L = 2, N = ±2,

Q
(2)
nN (x) = (−)nR2 2

s2
nN (x)

(
1 + N

√
1 − x2

snN (x)

)
.

(112)

In the dipole case we need the coefˇcients with

L = 1, N = ±1,

Q
(1)
nN (x) = (−)nR

1
s2

nN(x)

(113)

for translation modes and

Q
(3)
nN (x) = (−)nR3 3

s2
nN (x)

(
1 +

4
3
N

√
1 − x2

snN (x)
− 2

s2
nN(x)

)
(114)

for compression modes.
Finally for the octupole response we need:

L = 3, N = ±1,±3,

Q
(3)
nN(x) = (−)nR3 3

s2
nN (x)

(
1 +

4
3
N

√
1 − x2

snN (x)
− 2

s2
nN (x)

+

+ 4(|N | − 1)
1 − x2

s2
nN (x)

)
.

(115)

For a given nucleus, the integrals Q
(k)
nN could depend on two variables: the

nucleon energy εF and its angular momentum λ. For the square-well potential
however, they display a scaling property and depend only on the variable x.

Moreover their A-dependence factorizes because Q
(k)
nN ∝ Rk. As a consequence

the A-dependence factorizes also in the zero-order propagator (75), that takes the
form of an A-dependent factor times a universal propagator.
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