УДК 53.1.074.3

ЭКСТРАПОЛЯЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ УСКОРЕННОГО РАДИАЦИОННОГО СТАРЕНИЯ НА УСЛОВИЯ ЭКСПЛУАТАЦИИ ЭЛЕКТРОИЗОЛЯЦИИ ДИПОЛЬНОГО МАГНИТА ПРИ НИЗКИХ МОЩНОСТЯХ ДОЗ

Л. Н. Зайцев^{*a*}, С. Л. Зайцев^{*b*}, В. П. Зорин^{*a*}, И. Е. Карпунина^{*a*}, А. Д. Коваленко^{*a*}, В. Н. Соловьев^{*b*}, Е. П. Череватенко^{*a*}

^аОбъединенный институт ядерных исследований, Дубна

^бИнститут теоретической и экспериментальной физики, Москва

^вМосковский государственный строительный университет

Измерены пределы прочности образцов из эпоксидной смолы, содержащей цемент, при одновременном воздействии температуры 328–378 К и мощности дозы γ -излучений 2,5 и 7,5 Гр · с⁻¹. Впервые методом «температурно-дозовой суперпозиции» определены предельные дозы, соответствующие 25 %-му снижению предела прочности материала при мощности дозы 2, $35 \cdot 10^{-2}$ Гр · с⁻¹. Расчетное значение предельной дозы $2 \cdot 10^5$ Гр для образцов из эпоксидной смолы хорошо согласуется с измеренным 2, $5 \cdot 10^5$ Гр. Для образцов из полимерцемента предельная доза, приведенная к температуре 293 К и мощности дозы облучения 10^{-3} Гр · с⁻¹, составляет 8 · 10^6 Гр.

The strength limits of the samples of epoxy containing cement at a temperature of 328–378 K and a dose γ -radiation rate of 2.5–7.5 Gy·s⁻¹ have been measured simultaneously. The limiting doses corresponding to 25 % losses of the yield strength were first determined by means of extrapolation to 293 K and 10^{-3} Gy·s⁻¹. The limiting dose $2 \cdot 10^5$ Gy for epoxy without cement measured empirically is in good agreement with value of $2.5 \cdot 10^{-2}$ Gy·s⁻¹. A limiting dose of $\sim 10^7$ Gy for polymercement cannot be directly measured at 293 K and 10^{-3} Gy·s⁻¹ because of very high time expenses for irradiation. In this case, the limiting dose can be determined only by the method of temperature–dose superposition.

введение

Исследование прочностных свойств изоляционных материалов, применяемых в технологии сверхпроводящих магнитов для сильноточных ускорителей релятивистских протонов и ядер, является актуальной задачей.

Большая часть магнитной структуры протонных синхротронов в процессе ускорения или циркуляции пучка воспринимает радиационную нагрузку порядка $2 \cdot 10^{-5} - 5 \cdot 10^{-4}$ Гр · с⁻¹. На единичные магниты систем инжекции или вывода пучка может приходиться значительно большая радиационная нагрузка 1-10 Гр · с⁻¹, что требует применения неорганических материалов: керамики, окислов металлов, цементов и др. Но

40 Зайцев Л. Н. и др.

таких магнитов мало, поэтому основное внимание уделяют диполям и линзам, так называемой «спокойной области», где удовлетворительными считаются обмотки с изоляцией из эпоксидной смолы [1].

В ускорителях тяжелых ядер (Pb, U) при прочих равных условиях радиационная нагрузка возрастает до $5 \cdot 10^{-3}$ Гр · c⁻¹ в «спокойной области» и до 10^3 Гр · c⁻¹ в «горячих» радиационных зонах из-за большой диссипации энергии потерянных ядер [2]. Например, для SIS100 на 1 ГэВ при 10^{12} ядер U · c⁻¹ желательно иметь материал с более высокой радиационной стойкостью.

Проблему можно решить с помощью различных наполнителей. Их можно разделить на порошкообразные и волокнистые. Цемент (неорганическое вяжущее вещество) представляет собой уникальный наполнитель. Он обеспечивает долговечность и повышает радиационную стойкость композита. Полимерный компонент улучшает электрофизические свойства изоляции и создает необходимую пластичность. При этом полимер образует в затвердевшем материале самостоятельный структурный элемент и определяет кинетику радиационно-химических процессов при радиолизе. Результаты исследований механических и диэлектрических свойств различных полимерцементов в широком диапазоне соотношений эпоксидных смол и цементов приведены в [3]. Однако исследования радиационной стойкости при малых мощностях доз ($\sim 10^{-3}$ Гр · c⁻¹) не проводились.

В данной работе представлены результаты измерений предела прочности после облучения образцов эпоксидной смолы и полимерцемента. Методом «температурно-дозовой суперпозиции» определены предельные дозы облучения для этих материалов.

1. МЕТОДИКА

Температурное влияние имеет фундаментальное значение в химическом воздействии ионизирующих излучений на полимеры. При более высоких температурах, чем температура эксплуатации T_3 , происходит ускорение процесса деградации полимера без изменения механизма основных химических реакций. Для перенесения результатов измерений, полученных при повышенных температурах, на условии заданной температуры вычисляется так называемый коэффициент смещения, определяемый в соответствии с законом Аррениуса [4]:

$$k \sim \exp\left(-E/RT\right),\tag{1}$$

где k — скорость эффективной химической реакции; E — энергия активации термически активированного процесса старения материала; R — газовая постоянная; T — температура. Метод, лежащий в основе суперпозиции «время-температура-мощность дозы» [5], заключается в том, что отношение времен при двух различных температурах является точкой инверсии отношений мощностей доз, относящихся к этим же двум температурам. Это очевидно, поскольку при заданной дозе время обратно пропорционально мощности дозы. Значит можно проводить изодозовую экстраполяцию к большим временам, что эквивалентно условиям облучения при более низких мощностях доз. Этот полуэмпирический метод был проверен на изоляционных полимерных материалах. Получено удовлетворительное согласие между прогнозируемым ресурсом 14 лет и реальным временем 12 лет пребывания изоляции в реакторе АЭС при $2, 8 \cdot 10^{-3}$ Гр · с⁻¹ [6].

2. ОБРАЗЦЫ И ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА

Из эпоксидной смолы ЭД-22 (40 вес. %) и цемента (100 вес. %) изготавливались образцы размерами 40×15 мм и толщиной 4 мм. Технология изготовления полимерцемента подробно описана в [3]. Кроме того, по стандартной технологии были изготовлены несколько образцов из ЭД-22 без добавления цемента и из чистого цемента.

Образцы формировались в пакеты по 3 шт., как показано на рис. 1, и для каждого был один контрольный образец. Всего было сформировано 13 пакетов (соответствует числу экспериментальных точек на рис. 2). Из них 8 пакетов облучались при нормальной температуре (293 K), 5 пакетов при повышенных температурах от 328 до 378 K.

Рис. 2. Зависимость предельной дозы, соответствующей 25 % снижению предела прочности на растяжение от мощности поглощенной дозы (нагрузки): *1* — цемент; *2* — полимерцемент; *3* — эпоксидная смола; О, • — наши экспериментальные результаты; • квадруполь с цементной изоляцией DESY(см в [1]); + — данные полученные методом суперпозиции

Рис. 1. Геометрия облучения пакета образцов: *1* — источник ¹³⁷Cs; *2* — образцы из эпоксидной смолы; *3* — цветовые пленочные дозиметры (ЦДП)

В каждом пакете помещались цветовые пленочные дозиметры (ЦДП) толщиной от 75 до 150 мкм. Аналог, распространенный за рубежом, — FWT = 70 [7]. Все дозиметры были градуированы в полях γ -излучения в том числе и при повышенных температурах от 50 до 100 °C: ЦДП-4-1 измеряют поглощенную дозу от 10² до 2 · 10⁵ Гр. ЦДП-Ф-2 измеряют дозу от 10⁵ до 10⁸ Гр. Доза определялась по плотности почернения (изменения цвета) с помощью спектрофотометра СФ-26. Дополнительно экспозиционная доза контролировалась другими дозиметрами.

Облучение выполнялось на источниках, обеспечивающих необходимую радиационную нагрузку. Первая группа образцов облучалась γ -излучением с нагрузкой $5 \cdot 10^{-3} - 3 \cdot 10^{-2}$ Гр · с⁻¹. В качестве источника использовался изотоп ¹³⁷Сs активностью 4,1 Ки. Геометрия облучения показана на рис. 1. Контроль экспозиционной дозы в трех точках по оси симметрии источника производился воздухоэквивалентной ионизационной камерой VAK-251 с чувствительным объемом 50 мм³. Погрешность измерения ± 10 %. Мощность усредненной поглощенной дозы вычислялась умножением на коэффициент 0,95 для тканеэквивалентного фантома. Для ЭД-22 коэффициент не известен. Получено согласие с величинами поглощенных доз, измеренными ЦДП в пределах погрешности ±20 %. Время облучения пакета 2322 ч при мощности дозы $2,35 \cdot 10^{-2} \ \Gamma p \cdot c^{-1}$ (86,4 $\Gamma p \cdot q^{-1}$). В диапазоне нагрузок от 10° до 10^{1} Гр \cdot с⁻¹ для об-

лучения использовалась изотопная (⁶⁰Co) радиационно-химическая установка типа «К»,

42 Зайцев Л. Н. и др.

разработанная в НИФХИ им. Л.Я. Карпова, активностью 1,3 · 10³ Ки. Радиационные нагрузки на образцы измеряли стандартными глюкозными дозиметрами ДОГ-25/200. Из семи пакетов образцов два облучались на воздухе при температуре ~ 293 К. Другие пакеты поочередно облучались при температурах 328, 348, 378 К (ЭД-22) и 353, 363 К (ПЦ). Пакет образцов помещался в нагревательный шкаф «МІЛІ OVEN-988» (Франция), который имел регулятор установки температуры от 50 до 100 °C, автоматический температурный контроль (термостат) и световой индикатор. Облучение производилось через переднее термостекло толщиной 1,5 мм. Ресурс нагревательных тэнов на менее 1000 ч непрерывной работы. Измерение температуры производили платиновыми термометрами. Погрешность в величине температуры $\pm 1,5$ °C.

Для получения больших радиационных нагрузок $10^2 - 10^4 \, \Gamma p \cdot c^{-1}$ использовался ЛУЭ на энергию 1,2 ГэВ при флюенсе 10¹¹ электрон · см⁻² · с⁻¹. В пучке электронов были облучены 2 пакета ПЦ и один пакет цементного камня. Все сеансы облучения проводились в вакуумопроводе при начальной температуре ~ 293 К. Радиационный разогрев составлял 15 К. Для определения поглощенной дозы, обусловленной γ -составляющей, использовались термолюминесцентные дозиметры ТЛД-700.

Испытания контрольных образцов и образцов после облучения проводились в соответствии с ГОСТ 14236-81 при температуре 293 К. Для определения предела прочности на растяжение σ использовалась разрывная машина «INSTRON» (Япония). Погрешность определения $\sigma \pm 5$ %.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На рис. 2 показаны результаты облучения всех 13 пакетов образцов. Как и следовало ожидать, наблюдается сильная зависимость предельной дозы D_{lim} от мощности

Рис. 3. Изменение предела прочности на растяжение при облучении образцов ЭД-22: ○, ●, △ — мощность дозы 2,5 Гр \cdot с⁻¹; + — мощность дозы $2,35 \cdot 10^{-2} \ \mathrm{\Gamma p} \cdot \mathrm{c}^{-1}$

дозы (нагрузки) D. Объясняется это радиационнохимическим окислением полимерных компонентов, которое подробно обсуждено в [8]. Предельная доза в данном случае соответствует 25 %-му снижению предела прочности на растяжение вследствие воздействия на материалы радиационно-химических процессов при радиолизе. Как было сказано выше, увеличение температуры облучения усиливает эти процессы и при одинаковой нагрузке величина D_{lim} снижается.

На рис. 3 показано изменение σ в зависимости от времени облучения для образцов ЭД-22. По тангенсу угла (β) наклона прямых в соответствии с законом Аррениуса определялись коэффициенты смещения и расчетные точки для $\sigma(D)$. Для чистого полимера ЭД-22 $D_{\text{lim}} = 2 \cdot 10^{-5}$ Гр, определенная эмпирически, хорошо согласуется с экспериментальной величиной $D_{\text{lim}} = 2, 5 \cdot 10^5$ Гр, измеренной непо-

средственно на источнике ¹³⁷Сѕ при $\dot{D} = 2,35 \cdot 10^{-2}$ Гр с⁻¹. Это означает, что закон

Аррениуса работает для данного полимера и можно говорить о применимости метода «температурно-дозовой суперпозиции».

4. ЭКСТРАПОЛЯЦИЯ

На рис. 4 показаны экспериментальные результаты для полимерцемента при $\dot{D} = 7,5$ Гр · c⁻¹ и двух температурах: 353, 363 К. Начальная величина $\sigma_0 \cong (20 \pm 2)$ МПа.

Рис. 4. Изменение предела прочности на растяжение при облучении образцов полимерцемента; мощность дозы 7,5 $\Gamma p \cdot c^{-1}$

Рис. 5. Графоаналитическое определение констант скорости старения материалов при радиолизе: сплошные линии — по данным экспериментов; пунктирные линии — экстраполяция: *I* — полимерцемент; *2* — эпоксидная смола

Тангенс угла наклона полученных кривых представляет собой скорость радиационнохимических реакций. Из tg $\beta = k/2, 3$ находили константы скорости в зависимости от температуры, которые приведены в таблице.

Т, К	$1/T \cdot 10^{-3}$	$\lg k$	k(T)
293	3,4	6,2	$2, 5 \cdot 10^{-6}$
353	2,8	2,4	$1,7\cdot10^{-2}$
363	2,7	1,2	$8,0\cdot10^{-3}$

В соответствии с уравнением Аррениуса строились зависимости $\lg k = f(1/T)$ для ЭД-22 и ПЦ (рис. 5). Путем графической экстраполяции полученных прямых определялась скорость реакции старения при температуре эксплуатации 293 К ($1/T = 3, 4 \times 10^{-3}$ K⁻¹, $k_{293} = 2, 5 \cdot 10^{-6}$).

44 Зайцев Л. Н. и др.

Допустимый срок эксплуатации (ресурс) можно вычислить по формуле

$$t_{\mathfrak{d}} = \frac{2, 3(\lg \lg \sigma_0 - \lg \lg \sigma_{\lim})}{k_{293}},$$
(2)

где σ_0 — предел прочности необлученного материала; σ_{lim} — предельно допустимый предел прочности на растяжение (0,75 σ_0). Мощность дозы, соответствующая $T_{\mathfrak{d}} = 293$ K, определяется из формулы

$$\dot{D}_{\mathfrak{d}} = [k_{293}/k(T_{\mathfrak{H}\mathfrak{M}})]\dot{D}(T_{\mathfrak{H}\mathfrak{M}}),$$
(3)

где $\dot{D}(T_{\text{изм}})$ — мощность дозы, измеренная при данной температуре; $k_{293}/k(T_{\text{изм}})$ — отношение констант скоростей при T_3 и $T_{\text{изм}}$ (по существу является коэффициентом смещения). По формуле (3) были вычислены величины: $\dot{D}_1 = 2, 3 \cdot 10^{-3} \text{ Гр} \cdot \text{c}^{-1}$ и $\dot{D}_2 = 1, 1 \cdot 10^{-3} \text{ Гр} \cdot \text{c}^{-1}$, соответствующие сдвигу от температур 353 и 363 K к температуре 293 K, что позволило спрогнозировать $D_{\text{lim}} \approx 8 \cdot 10^6$ Гр при $\dot{D} = 10^{-3} \text{ Гр} \cdot \text{c}^{-1}$. Теперь можно сравнить прогнозируемый ресурс для полимерцемента по дозовой зависимости (рис. 2) и по формуле (2). Из графика рис. 2: $D_{\text{lim}}/\dot{D} = 8 \cdot 10^6/10^{-3} = 8 \cdot 10^9 \text{с}$ или 5, $7 \cdot 10^6$ ч. По формуле (2): $2, 3 \lg 2/2, 5 \cdot 10^{-6} = 2, 8 \cdot 10^5$ ч. Полученные данные не согласуются между собой, потому что, как следует из [5], коэффициенты смещения должны определяться через энергию активации, а не через константы скорости процесса. Однако вычислить энергию активации при радиолизе в твердом теле практически невозможно [9].

На точность метода суперпозиции влияют главным образом три фактора: неоднородность материала образцов, колебания температуры при облучении и точность мониторирования дозовой нагрузки. Так колебания температуры в ± 2 °C могут давать ошибку в определении константы $k \pm 20$ %. Доза в материале определяется с погрешностью 20 %. Однородность состава образцов 15–20 %.

ЗАКЛЮЧЕНИЕ

Экспериментально проверен и подтвержден способ определения радиационной стойкости изоляционных материалов в пределах малых мощностей доз на основе методики «температурно-дозовой суперпозиции».

Показано, что радиационный ресурс эпоксидной смолы может быть увеличен в десятки и более раз путем введения порошкообразных и волокнистых наполнителей.

Экспериментальные исследования других перспективных материалов и расчетные работы в данном направлении планируется продолжить.

Авторы выражают глубокую благодарность проф. Гюнэри Аковали (СВТУ, Турция) за ряд ценных методологических советов, Л. Б. Голованову за помощь в некоторых измерениях, А. И. Малахову, П. И. Зарубину и Ю. Е. Титаренко за поддержку данной работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зайцев Л. Н. Радиациональные эффекты в структурах ускорителей. М.: Энергоатомиздат, 1987.
- 2. Kovalenko A. et al. Superconducting fast-cycling dipole magnets for the GSI future accelerator facility. Reporte EPAC'2002. Paris, 2002; http://jacow.web.cern.ch/Jacow/

- 3. Беренюк М.А. и др. Полимерцемент как изоляционный материал для обмоток магнитов. Препринт ИФВЭ 86-75. Серпухов, 1986.
- 4. Милинчук В. К. и др. Основы радиационной стойкости органических материалов. М.: Энергоатомиздат, 1994.
- 5. Gloush K.T., Gillen R.T. // Polymers Degradation Stability. 1989. V. 24, No. 2. P. 137.
- 6. Burhay S.G. // Proc. of Intern. Symp. Rad. Degrad. Polym. and Rad. Resist. Mater., Takasaki, Japan, 1989. P. 149–158.
- 7. Абросимов В. К. и др. // Докл. VIII Всесоюз. совещ. по дозиметрии интенсивных потоков ионизирующего излучения. Обнинск, 1987. С. 142.
- 8. Зайцев Л. Н. // ЭЧАЯ. 1999. Т. 30, вып. 5. С. 1292–1327.
- 9. *Кириллова Э. И.* Гарантийные сроки хранения некоторых полимеров // Пластические массы. 1973. № 3. С. 49–53.

Получено 16 января 2003 г.