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ON THE FERMI-SURFACE DYNAMICS OF ROTATING NUCLEI

V.G.Kartavenko'?, I.N.Mikhailov', T.I.Mikhailova® P.Quentin?

Generalized virial theorems are written for rotating nuclear systems with intrinsic
currents. A set of dynamical equations of motion for angular momentum, inertia and
pressure tensors is obtained to study the collective vortical modes (e.g., modes including
the Kelvin circulation) in nuclear excitation and reaction processes.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR and Centre d’Etudes Nucléaires de Bordeaux-Gradignan, CNRS-IN2P3,

Gradignan, France.
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Ccbopmynupos Hel 00001I€HHbIE BUPU JIbHBIE TEOPEMBI Il BP 11 IOMIUXCS SIEPHBIX
CHCTEM IIPU H JINYMU BHYTPEHHUX BUXPEBBIX MOTOKOB. [lofydeH cucreM AMH MHUYECKHX
yp BHEHUIl IBUXEHUS [UI TEH30POB YIJIOBOTO MOMEHT , MOMEHT HWHEPLMU U [ BICHUS C
LENbI0 U3y4eHHsl KOJUIEKTHBHBIX BUXPEBBIX MOJ BO30YXeHHs (B TOM YMCIIE C HEHYIEBOM
HUpKyssnueil KenbBuH ) B SIepHBIX peaklUUaX U HPOLEcC X BO30YXIEHUS TOMHBIX SIep.
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Recent studies of collective nuclear motion (see, e.g., [1], [2]) show the limitations of
theoretical models dealing only with the coordinates describing the distribution of nuclear
matter in space (such as electric multipole moments). The motion of nuclear surface is
of course accompanied by the currents of matter, i.e., by a rearrangement of the particles
momenta. However, the role of the quantities determining the distribution of particles in
momentum space depends on the dynamical conditions. It means that some of them must
be acknowledged as generalized coordinates kinematically independent of the coordinates of
a geometrical nature. One possible way to incorporate into the theory such quantities was
proposed in [3] in which the method of “virial theorems” initiated by Chandrasekhar [4] was
suggested for the study of nuclear multipole giant resonances and then generalized to the
motion of large amplitude for the study of nuclear fusion reaction [5].
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In the above-quoted references, the rotational motion was not considered. For a rotating
system of nucleons the single-particle Wigner distribution function looses its spherical sym-
metry in phase space due to the implementation of collective currents. Not only the shape of
a composite nuclear system, and its density distribution, but also the pressure tensor become
spherically asymmetrical. The importance of an explicit dynamical treatment of the latter
anisotropy has been pointed out in papers dealing with the fission [6] and fusion reactions [2].

Nuclear collective vortical motion may differ drastically from a traditional case of a
uniform rigid rotation with a constant angular velocity O. Namely a local vorticity within
the rotating frame ((F7, t) = rotv(7,t) # 2(} may appear. This naturally leads to an intrinsic
vorticity concept. Its usefulness in nuclear physics has been pointed out by various authors [7]
and some connections of these modes with current research in mesoscopic systems [8] and
nonlinear excitations [9] have been drawn.

In this paper we suggest the following way to analyze possible dynamical effects as-
sociated with the intrinsic vorticity. Within the mean-field approximation, we analyze the
evolution of one-body Wigner phase-space distribution function of the full many-body wave
function. We will follow the well-developed scheme using as the starting point the Vlasov
equation for the Wigner phase-space distribution function [10]
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with a “relaxation term” I, added to the kinetic equation to describe dissipation effects. The
quantity V(7,t) is the self—consistent single-particle potential which is assumed here to be
local, m is the mass of nucleon.
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Out of the Wigner distribution function, virials at different orders can help one to extract
useful physical information from the total phase space dynamics. Integrating the initial kinetic
equation (1) over the momentum space with different polynomial weighting functions of the
p variable one comes, as is well known [3], [4], [11], to an infinite chain of equations for
local collective observables including the density, collective velocity, pressure and an infinite
set of tensorial functions of the time and space coordinates, which are defined as moments of
the distribution function in the momentum space:

e the particle n(7,t) = [ dp f(7,p,t), and the mass p(7,t) = mn(7,t) densities,

e the collective current and velocity of nuclear matter
o) = [ dppf(pe)

e the pressure tensor and the energy and momentum transfer tensors of different orders
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e and the integrals related to relaxation terms

/dﬁlrel = 07 /dﬁﬁlrel = 07

1 "
]Rij = E /dp%qj]relv

Truncating this chain at order two in ¢ one arrives at the ”fluid dynamical” level of description
of nuclear processes.
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where the usual notation 2 = 2 +Zk: ug 52 is introduced for the operator giving the material
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derivative, or the rate of change at a point moving locally with the fluid. The hydrodynamical

set of Egs. (2-5) describes an evolution of a rotating nuclear system. We consider two frames

of reference with a common origin: an inertial frame, (X7, X3, X3), and a moving frame,
3

(x1,29,23). Let z; = > T,;; X, be the linear transformation that relates the coordinates,
j=1

X and #, of a point in two frames. The orientation of the moving frame, with respect to

the inertial frame, will be assumed to be time dependent. Since T;;(t) must represent an

orthogonal transformation, the vector
1 dT
_ +
=g ) " eiji (dt) T
j.k,m jm

represents a general time-dependent rotation of the & frame with respect to the inertial frame.
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Let us define integral collective “observables” (the integrals over the whole phase space
of one nucleon containing the distribution function appropriately weighted), namely an inertia
tensor J;;(¢), the dynamical part of the angular momentum L;(¢), the integral pressure tensor

I1,;(t) defined as
Jij = /df XTiZjp, Hij = /df ]P)ija
Lk = Zsk”/d:ﬁp:ﬂzu]
.3

The dynamics in terms of the latter “observables” is expressed by a set of virial equations in
the rotating frame

d2
ﬁjij + Z Qk Q‘ij +Q ‘Jik) — QQQJU
+ 229 /dr puk(Eisk®j + €jskTs)
dQ
Z dt (5zskvﬂkj + 5jske]Ikz) - 0;
s,k
dLy

T + ZEIWQ Qo jm — QZQ /drpukacé

4,5,m

- W«UksﬂLE(Qk;uﬂjj)—

S

_Hij + Fij +2 Zﬂs(Eiskaj + Ejsknki) = Rij,
s,k

ou;
Fij = Z/d?‘ ( ik = +ijax )

where the tensors of collective kinetic and potential energies, and the relaxation tensor are

/df uiu;p, Wij = /df xjg_vn,
2

L (0P
/dm ( ot )relxlm].

The above equations constitute a starting point for the study of the stationarity conditions and
dynamical properties of rotating nuclear systems. They provide a formal framework within
which the coupling of the deformations in the 7 space and in the p space can be explicitly
worked out. The development of a collective model on the basis of such equations is currently
in progress.
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