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A review is given of some recently obtained results on analytic contractions of Lie algebras
and Lie groups and their application to special function theory. The contractions considered are from
O(3) to E(2) and from O(2,1) to E(2), or E(1,1). The analytic contractions provide relations
between separable coordinate systems on various homogeneous manifolds. They lead to asymptotic
relations between basis functions and overlap functions for the representations of different groups.

INTRODUCTION

Lie-algebra contractions were introduced into physics by Inonii and Wigner [1]
in 1953 as a mathematical expression of a philosophical idea, namely the corre-
spondence principle. This principle tells us that whenever a new physical theory
surplants an old one, there should exist a well defined limit in which the results
of the old theory are recovered. More specifically Inonii and Wigner established
a relation between the Lorentz group and the Galilei one in which the former
goes over into the latter as the speed of light satisfies ¢ — oo.

The theory of Lie-algebra contractions (and deformations) has acquired a life
of its own. It provides a framework in which large sets of Lie algebras can be
embedded into families depending on parameters. All algebras in such a family
have the same dimension, but they are not mutually isomorphic [2].

Two types of Lie-algebra contractions exist in the literature. The first are
standard Inonii—Wigner contractions [1,3,4]. They can be interpreted as singular
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changes of basis in a given Lie algebra L. Indeed, consider a basis {e1,...,e,}
of L and a transformation f; = Ui(¢)e,, where the matrix U realizing the
transformation depends on some parameters . For ¢ — 0 (i.e., some, or all
of the components of & vanishing) the matrix U(e) is singular. In this limit
the commutation relations of L change (continuously) into those of a different,
nonisomorphic, Lie algebra L'.

More recently, «graded contractions» have been introduced [5-7]. They are
more general than the Indnii—Wigner ones and can be obtained by introducing pa-
rameters modifying the structure constants of a Lie algebra L; in a manner res-
pecting a certain grading and then taking limits when these parameters go to zero.

It is well known that there exists an intimate relationship between the the-
ory of special functions and Lie group theory, well presented in the books of
Vilenkin [8], Talman [9], and Miller [10]. In fact all properties of large classes
of special functions can be obtained from the representation theory of Lie groups,
making use of the fact that the special functions occur as basis functions of
irreducible representations, as matrix elements of transformation matrices, as
Clebsch—Gordon coefficients, or in some other guise. Recently, the class of func-
tions treatable by group theoretical and algebraic methods has been extended to the
so-called g-special functions that have been related to quantum groups [11-13].

One very fruitful application of Lie theory in this context is the algebraic
approach to the separation of variables in partial differential equations [14-19].
In this approach separable coordinate systems (for Laplace—Beltrami, Hamilton—
Jacobi and other invariant partial differential equations) are characterized by com-
plete sets of commuting second order operators. These lie in the enveloping al-
gebra of the Lie algebra of the isometry group, or in some cases of the conformal
group, of the corresponding homogeneous space.

A question, that up to the last few years has received little attention in the
literature, is that of connections between the separation of variables in different
spaces, e.g., in homogeneous spaces of different Lie groups. In particular, it
is of interest to study the behavior of separable coordinates, sets of commuting
operators and the corresponding separated eigenfunctions under deformations and
contractions of the underlying Lie algebras.

A recent series of papers [20-29] has been devoted to this new aspect of
the theory of Lie-algebra and Lie-group contractions: the relation between the
separation of variables in spaces of nonzero constant curvature and in flat spaces.
The curved spaces were realized as spheres S,, ~ O(n + 1)/O(n), Lorentzian
hyperboloids H,, ~ O(n,1)/0O(n), or O(n,1)/O(n — 1,1). The flat spaces
where either Euclidean E,,, or pseudo-Euclidean E(n — 1,1) ones. The curved
and flat spaces were related by a contraction of their isometry groups and the
corresponding isotropy groups of the origin.

The essential point of these articles was the introduction of «analytic contrac-
tions». The contraction parameter is R which is either the radius of the sphere
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S, or the corresponding quantity x5 — 27 — ... — 22 = R? for the hyperboloid.
The contractions are «analytic» because the parameter R figures not only in the
structure constants of the original Lie algebra, but also in the coordinate systems,
in the operators of the Lie algebra, in the invariant operators characterizing the
coordinate systems, in the separated eigenfunctions and the eigenvalues.

Once the parametrization displaying the parameter R is established, it is
possible to follow the contraction procedure R — oo explicitly for all quanti-
ties: for the Lie algebra realized by vector fields, the Laplace—Beltrami operators,
the second-order operators in the enveloping algebras, characterizing separable
systems of coordinates, the separated ordinary differential equations, the eigen-
functions and the coefficients of the interbases expansions.

For two-dimensional spaces all types of coordinates were considered; for
example, contractions of O(3) to E(2) relate elliptic coordinates on Ss to elliptic
and parabolic coordinates on Fs. They also relate spherical coordinates on S5
to polar and Cartesian coordinates on Fy [20,22,24]. Similarly, all 9 coordinate
systems on the Hy hyperboloid can be contracted to at least one of the four
systems on E», or one of the 10 separable systems on E; ; [21,23].

Contractions from S,, to E,, were considered for subgroup type coordinates
in Refs. 25,26, 28, for subgroup type coordinates and certain types of elliptic and
parabolic ones.

The main application of analytic contractions in this context is to derive
special function identities, specially asymptotic formulas. Among other possible
applications we mention the theory of finite dimensional integrable and superin-
tegrable systems [30,31].

In this paper we restrict ourselves to two-dimensional spaces of constant
curvature.

1. SEPARATION OF VARIABLES IN TWO-DIMENSIONAL SPACES
OF CONSTANT CURVATURE

1.1. Operator Approach to the Separation of Variables. Let us first consider

a quite general two-dimensional Riemannian, pseudo-Riemannian or complex
Riemannian spaces with a metric

ds® = gip du'du®, u= (u',u?). (1.1)

In this space we introduce a classical free Hamiltonian

H = gir(w)pipr, (1.2)
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where p; = —0H/Ju; are the momenta classically conjugate to the coordinates
u". We also introduce the corresponding Laplace—Beltrami operator

\/_ M 8 (1.3)

LB —

vET

We will be interested in two related question:
1. What are the quadratic polynomials on phase space

Q = a™* (wWpipr, (1.4)

that Poisson commute with the Hamiltonian

0Q OH 3@ OH
{Q H} Z <8uz 82?1 82?1 8“1) 0 (1)

In other words, when do quadratic (in the momenta) integrals of motion
exist? Respectively what are the second-order Hermitian operators

Q = {a™ (u)0u,0u, } (1.6)

(where the bracket denotes symmetrization) that Lie commute with the Laplace—
Beltrami operator

Q,H|=QH - HQ =07 (1.7)

2. Do the Hamilton—Jacobi and Laplace—Beltrami equations in the considered
space allow the separation of variables, and if so, how do we classify and con-
struct separable coordinates? By separation of variables for the Hamilton—Jacobi
equation we mean additive separation

a8 08
gik g =M (1.8)
S = S1(u', A p) + Sa(u?, X, ). (1.9)

For the Laplace—Beltrami operator we have in mind multiplicative separation
AU =\ U, U =T, (ul, \ ) Us(u? A\, ). (1.10)

In both cases A and p are the separation constants.

In this review article we shall mainly be interested in the Laplace—Beltrami
operators in different spaces. However, some aspects of separation are simpler to
discuss for the Hamilton—Jacobi equation. In two-dimensional Riemannian space
the two equations separate in the same coordinate systems.
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The existence of integrals of motion that are either linear or quadratic in the
momenta was analyzed by Darboux [32] and Koenigs [33] in a note published in
Volume 4 of Darboux’s lectures. In particular it was shown that a metric (1.1)
can allow 0, 1, 2, 3 or 5 linearly independent quadratic integrals. The case of
5 quadratic integrals occurs if and only if the metric corresponds to a space of
constant curvature. In this case the second-order integrals are «reducible». That
means that the metric allows precisely three first-order integrals

Li = a;i(u)pr + bi(u)p2, u= (ui,u2), i=1,2,3 (1.11)

and all second-order integrals are expressed as second-order polynomials (with
constant coefficients) in terms of the first-order ones:

3
Q= > AwLiLy,  Aj = const. (1.12)
i,k=1

If the polynomial @ is the square of a first-order operator L, then it will provide
a subgroup type coordinate. This is best seen by considering the corresponding
first-order operator

X = &(u1,u2)0u, + nur, u2)dy, (1.13)

that generates a one-dimensional subgroup of the isometry group G. From
(u1,u2) we transform to the new coordinates (vy,v2) «straightening out» the
vector field (1.13) to the form

X = 0,,. (1.14)

Then v; will be an ignorable variable. The complementary variable vy =
¢(u1,u2) can be replaced by an arbitrary function of vy, the ignorable vari-
able v; can be replaced by f(v1) + g(v2), where both f and g are arbitrary. The
separable coordinates are v; and vy (with the above-mentioned arbitrariness).

Now let us assume that an irreducible quadratic integral () as in (1.4) is known
for a considered metric (1.1) (that is, ) is not square of a linear integral). We
can then impose that two equations be satisfied simultaneously. In the classical
case they are

05 05
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L I

(1.15)

Similarly, we can consider the quantum mechanics of a free particle in such a
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space and write two simultaneous equations

gy (L9 a9 \g_
H@(\/wui\@g (%k,)\pw,

. 1 0 G 0
\I/ e E— - 7,k’_ \I/ == \I/.

@ ( V9 Out Vga ouk ) s
Separable coordinates for the two systems (1.15) and (1.16) are obtained by
simultaneously transforming H and (@ to a standard form, in which the matrices
gir. and a;x of (1.15) (and (1.16)) are diagonal. This can be done by solving the
characteristic equation

(1.16)

lai — pgix| = 0. (1.17)

If two distinct roots p; and po exist, they will provide separable coordinates,
at least over the field of complex number. If we are considering real spaces,
then it may happen that p; and po are real only in part of the space and do not
parametrize the entire space. We will see below that this indeed happens for
instance in the pseudo-Euclidean plane Fy ;.

The roots p; and p2 can be replaced by any functions u = u(p1), v = v(p2).
This freedom can be used to transform H and () simultaneously to the form

_ 2 .2\ _
= al) ¢ p R =

! 2 _a()p?) =
Q= m(ﬁ(u)pu (v)py) = p-

The Hamiltonian H in (1.18) is in its Liouville form [34]. The separated equations
are

(1.18)

aH+Q=a\N+pu, [BH—-—Q=0N—p (1.19)
for the Hamilton—Jacobi equation and similarly
(@H +Q)¥ = (aA+p)¥,  (BH—Q)¥ = (BA—p)¥ (1.20)

for the Laplace—Beltrami equation.

Let us now restrict ourselves to two-dimensional spaces M of constant cur-
vature, that is to the Euclidean plane Ejy, pseudo-Euclidean plane F 1, sphere S
and two-, or one-sheeted hyperboloid Hs. Each of these has a three-dimensional
isometry group GG. The Lie algebra L of G has in each case a standard basis
which we denote { X7, X2, X3}
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The Laplace—Beltrarpi operator H = App (1.3) is in each case proportional
to the Casimir operator C' of the Lie algebra L. The operator () commuting with
H will have the form

3
Q=Y AunXiXi, Ai=Ap, (1.21)
i,k=1

where A is a constant matrix. Let ¢ € G be an element of the Lie algebra of the
isometry group of the considered space. Let us rewrite Eq. (1.21) in matrix form

Q =u" Au, u? = {X1, Xo, X3}. (1.22)

The transformation g acting on the space M induces a transformation v’ = gu on
the Lie algebra L. The Casimir operator App stays invariant, but ) transforms
to

Q = ungTAgul. (1.23)

Thus, for spaces of constant curvature a classification of operators () commuting
with H reduces to a classification of symmetric matrices A = A” into equivalence
classes under the congruence transformation

A =g¢TAg, gea. (1.24)

This problem, as we shall see below, can be reduced to that of classifying elements
of Jordan algebras into equivalence classes.
Furthermore, the operator C' of L can also be written in the form

C1
C =u"Cu, C = s . (1.25)

3
Two matrices A and A will give equivalent coordinate systems if they satisfy
A=xgTAg+puC,  X#£0, (1.26)

where A and p are real constants.
1.2. Separable Coordinate Systems in the Euclidean Plane. The Lie algebra
of the isometry group E(2) is given by

L= anﬂm — .1318952, P1 = 8951, PQ = 8952. (127)
The operator ) of Eq. (1.21) will in this case be

Q = aL?+ by (LP, + P,L) 4 by(LP, + P,L) +
+ 1Pl 4+ coPf +2c3P Py, (1.28)
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An E(2) transformation matrix will be written as
I T 2 T
= , & =(&4,%), ReR*, R'R=1 (1.29)
The matrix A of Eq.(1.22) is

T
A—<gb5), S—(Cl C3>, b7 = (bi,by),  (130)

3 C2

and C of (1.25) is
C = 1 , (1.31)

since the Casimir operator is
C=A=P:+ P2 (1.32)

The transformation (1.26) with A = 1 has two invariants in the space of symmetric
matrices A, namely

I =a, I,=/{[alc; —c3) — (0% — b2)]? + 4(acs — biby)? 2. (1.33)

Correspondingly, the operator @ can be transformed into one of four canonical
forms

)L =0, =0, Qo = P? (1.34)

2) L #0, L=0, Qr = L? (1.35)

3) L=0, Ib#0, Qp = LP+ PL, (1.36)
I

4) I #£0, Li#0, Qg = L>*—D?P}, D*>= I_; (1.37)
1

The first two forms correspond to subgroup-type coordinates. Thus, Q¢
of (1.34) corresponds to Cartesian coordinates, in which P, = 9, (and also
P, = 0,) is already straightened out. Both z and y are ignorable. The second,
@R, corresponds to polar coordinates

rT=rcos¢, Yy=rsing (1.38)
in which L = 0y is straightened out so that ¢ is an ignorable variable.
The coordinates corresponding Qp of (1.36) are the parabolic coordinates
Lo

T = §(u —v?), Y = uv. (1.39)
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Equivalently, if we take Q p = LP; + P1L, the prescription (1.17) leads to

1
T = uv, Y= §(u2 —v?). (1.40)

Finally, Qg of Eq.(1.37) corresponds to elliptic coordinates in the plane. They
can be written as

x = Dcosh&cosn, y = Dsinhsing. (1.41)

The results are presented in Table 1.
1.3. Separable Coordinate Systems in the Pseudo-Euclidean Plane. The
Lie algebra of the isometry group F(1,1) can be represented by

K= (t&,—l—x@t), P0=8t, P1 :81 (142)
The second-order operator (1.21) is
Q=aK?+by(KPy+ PK) + b1 (KP, + P,K) +
+coP} + 1Pt +2co Py, (1.43)

Equivalently, the matrix A of (1.24) is

T
A=<Zbc>, CZ<CO CQ>, BT = (bo,br).  (1.44)

C2 (1

We will classify the operators Q into conjugate classes and the action of the
group E(1,1), including the reflactions

Iy : (x,t) — (x,—t), IIj:(x,t) = (—=x,t). (1.45)

An element of E(1,1), acting on the Lie algebra (K, Py, P1) can be represented
as

_(1 §T> T _ 2 AT 7A _
g= , 13 —(fo,gl), AelR, AMJA=J (1.46)

with

1 0
J= (0 o ) (1.47)

The matrix A of (1.44) is subject to the transformation (1.26) and in this case we
have

;o B a at’ 4+ BTA
A'=g'Ag = < €a+ATB ATCA+ ATBET + €5TA + ate” > (148)
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Table 1. Orthogonal coordinate systems on two-dimensional Euclidean plane F-

Coordiante systems Integrals of motion Solution of
Helmholtz equation
I. Cartesian x,y Exponential functions
—o0 < z,y < o0 Qc = P} — P}
II. Polar Product of
T =rcosy, y=rsiny Qr=1° Bessel function
0<r<oo,0<p <21 and exponential
III. Parabolic Product of two
T = (u2 — v2)/2, y=wv | Qp = LP>+ P>L | parabolic cylinder
0<u<oo,—o0<v<oo functions
IV. Elliptic Product of periodic
x = D cosh& cosn, Qr = L? — D?>P3 | and nonperiodic Mathieu
y = Dsinh&sinn functions
0<E<o0,0<n< 27

One of the invariants of this transformation is the constant a which can be chosen
to be a = 1, or is already a = 0.

Let us first consider a # 0. Choosing ¢ = —37A and putting a = 1, we
obtain

!’ 1 0 ! _ —1 T
A<O C,>, C'=JA1J(C - BBT)A. (1.49)

Notice that C’ and C' are symmetric matrices, but we have
X =J(C - psh), JXT =X, (1.50)

that is, X is an element of the Jordan algebra jo(1, 1). Since A is an element of the
Lie group O(1,1), we are faced with a well-known problem: the classification of
elements of a Jordan algebra with respect to conjugation under the corresponding
Lie group. The results are known for all classical Lie and Jordan algebras [35],
and for jo(1,1) they are quite simple. The matrix X can be transformed into one
of the following

(1.51)

with p € IR, q € R.
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For a = 0, (bg, b1) # (0,0) transformation (1.26) leads to Eq. (1.48) in which
we set a = 0. We choose the matrix A contained in O(1,1) to transform A3
to standard form and then choose ¢ to simplify the matrix C. For |by| > |b1],

|bo| < |b1| and |bg| = |b1| we can transform A into
0 ev/bi—b7 0
A = e\/b2 — b2 0 o |, €= =+1, (1.52)
0 0 0
0 0 ey/b3 —b3
Ay = 0 0 0 , €= *+1, (1.53)
ev/b?—03 0 0
0 1 1
A3 = 1 Y - ’ Y= 0517 (154)
L= v

respectively.

Finally, for a = by = b; = 0, C' # 0 we can use A to transform C' into one
of its standard forms JX;, ¢ = 1,2,3 with X, as in (1.51).

Thus, we have obtained a classification of matrices A that determine the
operator Q. Let us now list the corresponding operators. We first notice that
a = by = by = 0. The corresponding operator Q is in the enveloping algebra of
a maximal Abelian subalgebra of e(1,1), namely (Py, P1). Similarly, for a =1
and X = X, in Eq.(1.51) with p = ¢ we find that Q = K? is in the enveloping
algebra of a different maximal Abelian subalgebra of e(1,1), namely o(1,1)
(generated by K). These two cases correspond to subgroup type coordinates, the
other ones, to nonsubgroup type.

The list of operators must be further simplifield by linear combinations with
the Casimir operator

C =P; - P} (1.55)

Finally, we obtain a representative list of 11 second-order operators in the en-
veloping algebra of the Lie algebra e(1,1).

Qi(a,b) = a(P§+ P)+20P P,
(a,b) = (1,0),(1,1),0r(0,1),
Q = K?
Q3 = KP+PK,

Qs = KB+ BK,
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Qs = K(Po+P)+ (P+ P)K,

Qs = K(Py+P)+ P+ P)K + (P — P, (1.56)
Q: = K?—1?PyP, 1>0,

Qs = K?-D?P?, D>0,

Qo = K?-—d’°P% d>0,

Qo = K>+ (Py+ P

Qu = K?>—(Py+P)>

To obtain separable coordinates we proceed as in Sec. 1.1.

1. The operator Q1(a,b) for any a and b, corresponds to Cartesian coordi-
nates (¢, x), since the operators that are really diagonalized are Py and P; (they
correspond to a maximal Abelian subalgebra { Py, P1} € e(1,1)).

2. The operator Q2 = K? also corresponds to subgroup type coordinates,
namely pseudopolar coordinates

t = r cosh a, r = rsinh a,
(1.57)
0<r<oo, 00 < o < 00,

These coordinates only cover part of the pseudo-Euclidean plane, since we
have t? — 22 = r2 > 0. By interchanging ¢ and z in (1.57) we can parametrize
the part with ¢ — 22 = —r2,

The operators s, ... (11 can lead to separable coordinates via the algorithm
of Eq.(1.17). Two problems can and do occur. The first is that the roots of
Eq. (1.17) may coincide: p; = ps. Then we do not obtain separable coordiantes.
This happens in precisely one case, namely that of the operator Q)s.

To other problem that may occur is that the eigenvalues p(t,xz) may be
complex at least in a part of the (z,¢) plane. This part of the plane will then not
be covered by the corresponding coordinates (p1, p2).

The results of this analysis are presented in Table 2 and essentially agree
with those of Kalnins [36].

1.4. The Systems of Coordinates on S;. The Lie algebra of isometry group
O(3) is given by

0 L
L’i = _€ik’juk%7 [Li;Lk’] = eikija Z7k7.7 = 1) 2735 (158)
J

where u; are the Cartesian coordinates in the ambient Euclidean space E5. On
the sphere Sy we have u? + u3 + u3 = R?. The Casimir operator is

C=R*App=L3+12+12 (1.59)
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Table 2. Orthogonal coordinate systems on the two-dimensional pseudo-Euclidean

plane E; |

Coordinate system

Integrals of motion

Solution of
Helmholtz equation

v>0, —oco<u< oo

I. Cartesian Qc = PoPy Product of exponentials

t, x

II. Pseudo-polar Product of Bessel function
t = rcosh s, x = rsinh o Qs = K2 and exponential

r >0, —oo < 12 < 00

II1. Parabolic of type I Product of parabolic
t=1/2(u?+v?), x = uwv L={pP,K} cylinder function

v >0, —oc0o<u< oo fort2 —z2 >0

IV. Parabolic of type II Product of parabolic
t=uv, z=1/2(u?+v?) = {pP, K} cylinder function

for 22 —t2 >0

V. Parabolic of type III
t=1/2(n-¢)? - (n+0).
z=1/2(0— )%+ +0)
—oco <1, (<0

QW ={Py, K} +{P1,K}
+(Py — P1)?

Products of two linear
combinations of Airy
functions for x +t > 0

VI. Hyperbolic of type I

t=1/2 (cosh %C

n—¢

+ sinh

— sinh

z=1/2 (cosh
—oco <1, (<0

n+¢
2

n+¢
2

)

)

QL =K?2-12PyPy

Product of Mathieu equation
solutions with argument
displaced by i7/2

VII. Hyperbolic of type II

t = (sinh (n —¢) +e71¢),
z = (sinh (n — ¢) — "7¢)
—00 < 1n,{ < o0

QY = K2 + (P + P»)?

Product of two solutions of
Bessel’s equation, one with
real and one with imaginary
arguments

VIII. Hyperbolic of type I1I

t = (cosh (n — ¢) +e1¢),
x = (cosh (n — ¢) — e"7¢)
—oco <N, < o0

QU = K2 — (P + P»)?

Product of two solutions
of Bessel’s equation

IX. Elliptic of type I
t = Dsinhncosh(,
z = D coshnsinh ¢
—o00 < n,( < o0

I 2 2p2
1= K2 4 D2P;

Product of two solutions of
the nonperiodic Mathieu
equation

X. Elliptic of type II

(i) t = dcosh ncosh (,
z = dsinhnsinh ¢
—co<n<oo, (>0
(ii) t = dcosmcos(,

z = dsinnsin(
O<n<2m,0< (<

QY = K2 — 4P}

Product of two solutions
(i) of the nonperiodic
Mathieu equation

(ii) of the periodic
Mathieu equation
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and the Laplace-Beltrami Eq. (1.10) for S5 has the form

(0 +1
AV = — (R—Z )‘117 Ui (a, B) = Bk () i (6), (1.60)

where ¢/ = 0, 1,2, ... The second-order operator Q of Eq. (1.21) is given by
Q= AixLiLk, Ap = Agi. (1.61)

The transformation matrix for O(3) can be represented as

g =
cosacos3cosy —sinasiny —cosacosfsiny —sinacosy cosasinf
= sinacos fcosy 4+ cosasiny —sinacossiny + cosacosy sinasin 3 ,
—sin B cosy sin §sin y cos 3
(1.62)

where (a, 3,) are the Euler angles.
The matrix A;; can be diagonalized to give

Q(al, asz,a3) =Q = alL% + ang + a3L§. (1.63)

For a1 = as = as we have QQ ~ 0. If two eigenvalues of A;; are equal, e.g.,
a1 = as # as, Or a1 # as = as, Or a1 = a3 # a2, we can transform the operator
Q into the operators: Q(0,0,1) = L3, Q(1,0,0) = L? or Q(0,1,0) = L3,
respectively. The corresponding separable coordinates on Sy are the three types
of spherical ones

w1 = Rsinfcosyp = Rcosf = Rsinf” sin ",

U = Rsin@sinp = Rsinf cos¢’ = Rcosh”, (1.64)

uz = Rcosf = Rsinf sinyp’ = Rsinf” cos ¢”,
where ¢ € [0,27), 6 € [0,7]. They correspond to the group reduction O(3) D
O(2) and X = L? is invariant under O(2) and under reflections in all coordinate
planes.

The O(3) unitary irreducible representation matrix elements of (1.62) result
in the well-known transformation formula for spherical functions Y, (6, ¢) [8,37]

l
Vi (0',¢) = > D, 87) Yim (0, ), (1.65)
=1

where D! (o, B,7) are the Wigner D-functions

miy,m2

DY, Boy) = e~ ™o dl, L (B)e” ™, (1.66)
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(_1)mm/\/(£+m)!(£—m/)! ( 1 >2€—m+m/
(m m’) (¢ m)l(€+m/)!

A m—{, —m' —{ 51
X (sm§ﬂ> F{ !+ 1 ; — tan 5[3} (1.67)
and the spherical angles (6, @) and (&', ') are related by
cos ) = cosf cos 3 + sinfsin 3 cos (p — ),

: (1.68)
cot (¢' +v) = cot (¢ — @) cos B — M.
sin (¢ — @)

In particular, Yy, (0, ¢) corresponding to the solution of Laplace-Beltrami equa-
tion in the systems of coordinates (1.64) are related by the formulas

Yiom (6, Z Dmm,( 55 ) Yim(0.9). (1.69)

Vi 0.6 = 3 D (5:5:0) Yim(0:). (1.70)
m=—1

Vi (07, ¢") Z Dmm,,( )Ylm,(e,wf), (1.71)

When all three eigenvalues a; are different, then the separable coordinates in
Eq. (1.60) are elliptic ones [38—40]. These can be written in algebraic form, as

_ pelor—ai)(p2 —ay) _ p2lp1—as)(p2 — ar)
(ag —a1)(az —a1)’ K (a3 — ag)(a1 — az)’
(1.72)
w2 pelpr—as)(p2 — as)
’ (a1 — as)(az — a3)
with a1 < p1 <ag < py < as.
In trigonometric form we put
p1=a1+ (a2 —a1) cos? ¢, pa =as — (as — as) cos® 0, (1.73)
and obtain
1 —k"2cos?f0cos¢, wuz = Rsinfsing,
¢ u ¢ (1.74)

1—Fk%Zcos2¢pcosh, 0<¢<2m, 0<6<m,
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Table 3. Orthogonal coordinate systems on two-dimensional sphere .S>

Coordinate systems Integrals of motion Solution of Limiting
Helmholtz equation | systems on Eo
I. Spherical Product of associated | Polar
u1 = Rsin6 cos ¢, Qs =13 Legendre polynomials | Cartesian
ug = Rsinsin p, and exponential

u3 = Rcosf
v €[0,2m),0 € [0,7]

II. Elliptic Product of two Elliptic
ur = Rsn(a, k)dn (8,k'), | Qg = k'>L3 — k2L? | Lamé polynomials Polar

uz = Ren (o, k)en (B, k'), Cartesian
uz = Rdn (o, k)sn (B, k") Parabolic*
a € [-K,K],

B e [-2K',2K']

* After rotation.

where

az — ay . ' az — az
= ——— =sin’f, k?=—"—"
asz — a1 asz — a1

=cos®f, K2 +Kk2=1. (175

The Jacobi elliptic version of elliptic coordinates is obtained by putting
p1 = a1+ (az —ay)sn(o, k), po = as + (a3 — az) en?(B, k). (1.76)
We obtain

u; = Rsn (o, k)dn (3,k"), wuz = Ren(a,k)en (B, k),
(1.77)
u3 :Rdn(a)k)sn(67k/)a _KSQSK; _2KISBS2KI7

where sn(a, k), cn(a, k') and dn (3, k) are the Jacobi elliptic functions with
modulus k and &', and K and K’ are the complete elliptic integrals [41].

The interfocal distance for the ellipses on the upper hemisphere is equal to
2fR. The results are given in Table 3.

1.5. Systems of Coordinates on H5. The isometry group for the hyperboloid
Hy: u —u? —u3 = R?, where u; (i = 0,1,2) are the Cartesian coordinates in
the ambient space Fy 1, is O(2,1). We choose a standard basis K1, Ko, L3 for
the Lie algebra o(2,1):

Ky =- (uoauz + U‘Qauo)a Ky =— (uoaul + ulauo)a L= - (ulauz - UQaul)
with commutation relations

(K1, K] = —Ls, [L3, Ki] = K,, [Kj, L3]=Kj. (1.78)
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The Casimir operator is
C=R*Ag=K!+ K- L3 (1.79)
and the Laplace—Beltrami equation (1.10) is given by

I(1+1)
R2

where ¢ for principal series of the unitary irreducible representations has the form

ALB\II =

U, W (1, G2) = En(C)Pin(Ce), (1.80)

1
€:—§+ip, 0<p<oo. (1.81)

The second-order operator Q of Eq. (1.21):

Q = aK} + b(K1Koy + KoKy) + cK3 4+ d(K1 Ly + L3 K1) +
+e(KaLs + LsKy) + fL3  (1.82)

can be used to classify all coordinate systems on Hy. The classification of the
operators () can be reduced to a classification of the normal forms of the elements
of the Jordan algebra jo(2,1) [35]. There are 9 inequivalent forms, in one-to-one
correspondence with the 9 existing separable coordinate systems [15,42,43]. All
the coordinate systems are orthogonal ones.

The normal forms of the operator () and the corresponding coordinates are
given in Table 4. Cases I, II, and III correspond to subgroup type coordinates.
The corresponding subgroups are O(2), O(1,1) and E(1), respectively. The
O(1,1) subgroup in the equidistant coordinates acts in the 01 plane. We could
also have chosen the 02 plane (i.e., permuted u; and us).

The elliptic and hyperbolic coordinates of cases IV and V are given in
algebraic form. Equivalently, they can be expressed, e.g., in terms of Jacobi
elliptic functions. This makes it possible to express the coordinates in the ambient
space directly, rather than their squares. Indeed, if we put

01 = a1 — (a1 — a3)dn®(a, k), 02 = aj — (a1 —ap)sn?(B, k') (1.83)

and

o2 e BT g2 g2 (1.84)
a1 — as ay —as

into the expressions

(01 —a3)(02 — a3) (01 — az)(02 — a2)
(a1 —a3)(az — az)’ (ag —az)(ay — az)’
o polor —ai)(ar —02)

2= f (a1 — az)(a1 — as)’

2 _ p2 2 _ p2
ug =R ui =R

(1.85)

u
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Table 4. Orthogonal systems of coordinate on two-dimensional hyperboloid H2

Coordinate systems Coordinate Limiting Limiting
and integrals of motion systems on Fo| systems on Fq 1
I. Pseudo-spherical ug = Rcosht Polar Cartesian
7> 0,0 € [0,27) u1 = Rsinh7cos ¢
Qs = Lg ug = Rsinh7sin ¢
II. Equidistant ug = R cosh 11 cosh o Cartesian Polar
71,2 €ER u1 = Rcosh 1 sinh o
Qrq = Kf u2 = Rsinhmy
1. Horocyclic uo = R(E2 4+ 9% +1)/27 Cartesian Rectangular
>0,z € R up = R(E2+ 52 -1)/27 Cartesian coordi-
Quo = (K1 + L3)? us = R%/§ nates rotated by /4
(nonorthogonal)
IV. Elliptic u2 = R2 W Elliptic Elliptic I, 1L, 111
a1 —a3)(a2 — a3
az <az < p2 <aip <p1 u% =R? M% Parabolic Cartesian
a1 —az2)(a2 — a3
QE = L2 + sinh? f K2 u2 = R? (p1 = av)(ar = p2) Cartesian
(a1 —az)(a1 —a3)
V. Hyperbolic ug =R? M% Cartesian Elliptic II
a1 —az2)(a2 — a3
pr<az<az<a; <pp |ud= RQW Parabolic 1
(a1 — a3)(a2 — a3)
) (p1 —a1)(a1 — p2)
Qp = K2 —sin? aL? w=R2"C s P2
2 ’ 2 (a1 — a2)(a1 — a3)
. . ug + u% . .
VI. Semihyperbolic @ - (14 p2)(1 + p2) |Parabolic Cartesian
u2 —u? .
pi2 >0 R = (14 prp2) Cartesian
Qsu = —{K1, Lz} uz = R\/pipz
h? 29
VII. Elliptic-parabolic ug = cosh”at cos” ¥ Parabolic Hyperbolic 11
2 cosh a cos ¥
inh? @ — sin? ¥
a€R,YE€ (—7/2,7/2) |u1 = Smham s Y
2 cosh a cos v
Qep = (K1 + L3)? + K2 |ug = Rtand tanha
h2 b 29
VIII. Hyperbolic-parabolic |ug = w Cartesian Hyperbolic III
2 sinh bsin ¥
sinh? b — sin? ¥
b> 0,9 € (0, =R
(0,m) b 2 sinh bsin ¥
Qup = (K14 L3)? — K2|uz = Rcot ¥ coth b
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End of Table 4

Coordinate systems Coordinate Limiting Limiting
and integrals of motion systems on Fo | systems on Fy 1
2 212
4
IX. Semicircular-parabolic ug = Rw Cartesian Does not
8¢n correspond to a
&n >0 _ R(§2 +n2)2 -4 separable
Qscp = {K1, Ko} +{Ka, L3} UL = 8€n coordinate system
2 _ g2
wy = R ¢
26n

we obtain the elliptic coordinates in Jacobi form

up = Rsn(a,k)dn (3,k"), w1 =iRen (o, k)en(B,k),

1.86
ug =i Rdn (o, k) sn (8, k'), «a€ (iK'|iK"+2K), (€]0,4K’). (1.86)

2. CONTRACTIONS OF THE LIE ALGEBRA
AND CASIMIR OPERATOR

2.1. Contractions from o(3) to e(2). We shall use R~! as the contraction
parameter. To realize the contraction explicitly, let us introduce homogeneous or
Beltrami coordinates on the sphere, putting
Uy Cm
hal - , p=1,2. 2.1
us /1= (uf +u3)/R?

T, =

Geometrically (x1,x2) correspond to a projection from the centre of the sphere
to a tangent plane at the North pole. In this parametrization the metric tensor has
the following form

1 Ty 1 9
Guv = m |: uv + Tm] , T =x,7. (22)

The Laplace—Beltrami operator corresponds to

A — ]__|_ﬁ a_2+x_“i+i T i ’ —
BB R?) | 022~ R?0z, R?\""oxz, N

L2
= (wf+w§ + R_g) . (23)




254 POGOSYAN G., SISSAKIAN A., WINTERNITZ P.

where
0 Tpx, O 0 0
L= | = , Ls= — —xa— |. 2.4
K (&BH + R? 8:51,) K (xl dzy 2 8x1) 24
Using the connection between operators 7, and the generators of the O(3) group
L L
—Elzﬁza EQ:Wh L3 = —(z1m2 — 12m1),
we obtain the following commutation relations
Ls
(L3, m1] =m2, [L3,me]=—m, [m,m]= B2 (2.5)

so that for R — oo the o(3) algebra contracts to the e(2) one. Moreover the

momenta 7, contract to P, = d/0x,, (u = 1,2) and the o(3) Laplace-Beltrami
operator (2.3) contracts to the e(2) one:

A—QQL% A= (P +P; 2.6

LB =7+ + 55 = = (Pf + P5). (2.6)

2.2. Contractions from o(2,1) to ¢(2). As in Sec.2.1, let us introduce the
Beltrami coordinates on the hyperboloid Hs putting

u u
r,=R+Et =R £

uo VRZ+uZ ol

The O(2,1) generators can be expressed as:

p=12. 2.7)

e Xm0
R =2 8])2 R2 18 1 281)2 ’
Ky z1 0 0
—f—m:pl—ﬁGEla +$28—332),

L3 = X1 — IQT1.

The commutation relations of the o(2,1) algebra (1.78) in terms of the new
operators take the form

Lj
— 5
so, that for R — oo the o(2,1) algebra contracts to e(2) and the momenta 7, to

P, = 0/0z,. The o(2,1) Laplace—Beltrami operator (1.2) contracts to the e(2)
one:

[7?177?2] = [L?n 7:‘:1] = ﬁ‘Q; [7?2) L3] = ﬁ-17 (28)

L3

Angﬁf+ﬁ§—ﬁ—>A=(Pf+P§). (2.9)
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2.3. Contractions from o(2,1) to e(1,1). Let us introduce Beltrami coordi-
nates on hyperboloid H>

Uo Uo U Uy
=R—=R————, =R—=R———+——. (2.10)
vo U2 Vud +u? — R? o U2 Vud +u? — R?
The O(2,1) generators can be expressed as
K a0 w0, D
R~ "oy R \May, oy )
LS = 0 Y1 0 0
et A S L DY A 2.11
R =", TRz \ o 30 +un o) (2.11)

—Ky = K:y07:r2—|-y17:1'1.

The commutators of the o(2,1) algebra (1.78) in the new operators (7271,7?2, K)
take the form

~ o~ K ~ ~ ~ ~
[’ﬁ-lv’ﬁ-Q] = ﬁa [Kvﬁ-l} = _ﬁ—Q; [7?27-[(} = 7~T17 (212)

so, that for R — oo the o(2, 1) algebra contracts to the e(1,1) one. The o(2,1)
Laplace—Beltrami operator contracts to the e(1, 1) one:
=2 =2 K? 0?92
ALB:WI_WQ_’_ﬁ_)a—y%_a_y%’ (213)
and Eq. (1.80) transforms for large ¢ ~ pR to the one-dimensional Klein—Gordan
equation.

2o 0%

_OW L e 2.14
Y2 3yf+pw ! @19

3. CONTRACTION FOR SYSTEMS OF COORDINATES

3.1. Contractions and Coordinate Systems on S5
1. Spherical coordinates on Sy to polar on E5. We consider the spherical
coordinate (1.64) with the parametr a; = a2 and put

r
tanf = —.
an 7

In the contraction limit R — oo, § — 0 we have

U1 U2 .
r1 = R— — x =1rcosp, ro=R— — y=rsinep
us us
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and
Qs =L32— L

2. Spherical coordinate on Sy to Cartesian on Es. We choose the spherical
coordinate (1.64) with as = a3. Putting

x
cost ~ = ~ 0, cosgo’wgwo

R R

. . T T .
and taking the limit R — oo and #' — —, ¢’ — —, we obtain

2 2
1 L?
?QSZR—QZW%_’Pf’VQC
and
t 6’
o1 =R - —x, x3=Rcoty —y.
sin ¢

It is easy to see that for the case a; = ag the corresponding spherical system of
coordinates (1.64) contracts to Cartesian coordinates on Fs for R — oo.

3. Elliptic coordinates on S to elliptic coordinates on Es. We take @) in its
general form, equivalent to

az —a
Qe =Lj - (aj_a;)L% 3.1
We put
2 2
B _ D (3.2)

az — ap as — aq ’
and in the limit R? ~ a3 — oo obtain

_ D?
Zz — Z;) L = L - DB ~ I, (3.3)

Qp =13~ <
For the coordinates we put
p1=a1+ (a2 —ay) cos 1, p2 =a1 + (a2 —aq) cosh? £, (3.4)

and for R?> ~ az — oo, using Eq. (3.2), we obtain Eq.(3.41), i.e., elliptic
coordinates on the plane Ej.
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4. Elliptic coordinates on S to Cartesian coordinates on Fo. We start
from the coordinates (1.72) but change the ordering of the parameters a;, which
corresponds the interchange of coordinates ug < ug, i.e., put

ar <p1<az < p2<a (3.5
and choose az — a1 = as — az = a. Then we have
Qp = a(L; - L7). (3.6)
Introducing the new coordinates by

as—m:& p2 —as

a a

= &2, (3.7

we can rewrite the (1.72) in the form

2 2
d=Taoenre). w1

5 (1+&)(1-&), u3=RG&. (B8

Using Eq. (2.1) we have for Beltrami coordinates

(-)0+&) o p+&)1-6&)

2 2
] =R ——X———==, x5 =R (3.9
! 26162 2 26162
From equation (3.9) we obtain
R? 2 2 2, 2y271/2 2 .2
£a1 = D § PR et S et I ek S GRER )
T R?24 i+ a3 R? 4R* 2R?
Taking now the limit R — co we have
22 Y2
51—>1—ﬁ, Ezﬁl—ﬁ, (3.11)
and hence z; and x2 of Eq. (3.9) go into Cartesian coordinates:
T — T, Ty — Y. 3.12)
For the integral of motion in the limit R? ~ a — oo we have
1
Q—RQQEz(wf—wg)an—szQc. (3.13)

5. Elliptic coordinates on Sy to parabolic coordinates on Fs. We take
the operator (1.72) with a1 < p; < as < ps < a3 and choose the parameter
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as —ag = az — a1 = a. We must first «undo» the diagonalization (1.26) by a
rotation through /4. The operator (1.63) transforms into

1 1
EQE = —E(Lng + L3L1) = (L37T2 + 7T2L3), (3.14)

with the correct limit (1.39) for R — oo. The coordinates (1.77) on Sy are rotated
into

R
u; = —=(snadnf +dnasnf), wus = Rcnacnf,
1 \/5( 5 5) 2 5

. (3.15)
uz = —=(dnasn B — snadn ),

V2

with modulus k = &’ = 1/+/2 for all Jacobi elliptic functions.
From Eq. (3.15) we obtain

sna:% [(1+%)1/2 (1_U_R3)1/2_ (1_%)1/2 (1+u3 1/2]7

A= [0 5) 0% 09" 0 )

=|
~—~

(3.16)
Equations (3.16) suggest the limiting procedure. Indeed we put
U2 \/— U2
=—1+—= 2dng =1+ —. 3.17
sna + 57 ng + °R ( )
In the limit R — oo we obtain
2_ .2
x1—>x=u 2U, To — Y = uv, (3.18)

i.e., the parabolic coordinates (1.39).
3.2. Contractions of Coordinate Systems from H; to F-

1. Pseudo-spherical coordinates on Hs to polar coordinates on FEs. In the
limit R — oo, 7 — 0 putting tanh 7 ~ /R we have:

Qs = L3 — L3,
and for Beltrami coordinates (2.7) we obtain:

U1 U2 .
ry1=R— —x=rcosp, z2=R— —y=rsine.
Uo uo
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2. Equidistant coordinates on Hs to Cartesian on E5. For Beltrami coordi-
nates (2.7) we have:

21 = Rtanh7y, 3 = Rtanh7/coshs. (3.19)
Taking the limit R — oo, 71,72 — 0 and putting sinh 7 ~ y/R, sinh7e ~z/R

in (3.19) we obtain 1 — x, x2 — y and

Qeq _ - 2
RZ =T —>P1 NQC-
3. Horocyclic coordinates on Hy to Cartesian on Es. For variables Z,y we
obtain:

ug - R
y:

i‘:

up —uy’ up — U1

In the limit R — oo we get: & — y/R, ¢ — 1+ 2/R and Beltrami coordinates
go into Cartesian ones

R P24+g2-1 2%R
21=R—m5—5——2 9= 5———7F — Y.
TR T T e Y
For integral of motion we have:
Quo Ly 1
R2 :TFS—F R—z — E{TFQ,LP,} —>P22 NQc.
4. Elliptic coordinates on Hs to elliptic coordinates on Fo. We put
R? D?
= (3.20)
a2 — as ay — az

and in the limit R? ~ (—a3) — oo obtain:

Q e B e T~Q

E = L3 R2 2 1 E,
where 2D is the focal distance. Writing the coordinates as
p1=ai+ (a1 —ag) sinh? £, p2 = ag + (a1 — az) cos’n

and using Eq.(3.20) in the limit R? ~ (—a3) — oo we get the ordinary elliptic
coordinates on Fo plane [10, 15].

5. Elliptic coordinates on Hy to Cartesian on Fo. We make a special choice
of the parameters a;: a; — az = az — ag and determine new variables &; » by the
formula

2
512:Q172—a2:u(2)+u§i up + u3 _u_% (3.21)
' a1 — ag 2R? 2R? R?’ ’
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Considering the limit R — oo we obtain: &1 ~ 1+ 2y?/R?, & ~ x?/R? and the
Beltrami coordinate (2.7) takes the Cartesian form

Uy 26162
21=R— =Ry| —F—— — =z,
T (G +1)(&+1)
() (€& -1 -&)
x9=R— = < .
T T e ey Y
The operator Qg goes to Cartesian one
Qe L3
<F = Fr 4+l = P~ Qo

6. Elliptic coordinates on Ho to parabolic on F,. We start from the rotated
elliptic coordinates

uy coshf sinhf 0 ug
ujp | = sinhf coshf 0 u | =
u 0 0 1 us
ug cosh f + uq sinh f
= | wgsinh f+wuycoshf |, (3.22)

U2

where sinh? f = (a1 —a2)/(az — as). We choose az — ag = a1 — az = a. Then
for rotated elliptic coordiantes (3.22) we get

Uy = %(snadnﬁ + i\/icnozcnﬁ),
2 (3.23)

uy = %(icnacnﬂ—i—ﬁsnadnﬂ), ug = iRdnasn 3,

with modulus k& = &’ = 1/+/2 for all Jacobi elliptic function. The integral of
motion transforms into

Qe =3L2— V2 (K Ls + L3K,), (3.24)

with the correct limit to (1.36). From Eq. (3.23) we obtain

2 RV2 R 2R 2 RV2 R 2R?’

1 u! u! 2 u’? 1 u! u! 2 w2
_ 2. 0(1 1 Yo P) (1M Uq 2
e/ 2\/( TR R> +2R2+2\/< e TR) Tory
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and therefore for large R we have

—icnoz:l—iu—2 cnﬁzl—f—iﬁ.
22 R’ 22 R
In the limit R — oo we obtain
u? —v?
TN DT =, T2 Y = u,

i.e., the parabolic coordinates (1.39).

3.3. Contractions of Coordinate Systems from H; to £ ;

1. Eguidistant coordinates on Ha to pseudo-spherical ones on Eq 1 plane.
For Beltrami coordinates (2.10) we have:

1Yo = Rcothm coshmy, y1 = Rcothm sinh 7. (3.25)
Taking the limit R — oo, 71 — zg + }% and putting

coth ™ = tanh

~

, (3.26)

==
==

we obtain
Yo — t =rcoshm, y; — & =rsinhm, (3.27)
where 0 < r < 00, —00 < T9 < oo. For the integral of motion we get
Qeo = K3 — Qs =L3. (3.28)

2. Pseudo-spherical coordinates on Hy to Cartesian coordinates on E ;.
For coordinates (2.10) we have
coth 7

=R e y1 = Rcotp. (3.29)

Taking the limit R — oo, 7 — i7w/2, ¢ — g and putting

t
coth 7 ~ i cotp ~ %, (3.30)

we see that Beltrami coordinates go into Cartesian ones
Yo —t, y1— . (3.31)
For the integral of motion we obtain

L2
% -5 - P~ Qe (332)
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4. CONTRACTION OF BASIS FUNCTIONS ON S> AND H»

4.1. Contraction of Spherical Basis and Interbasis Expansions

1. Spherical basis on Ss to polar on E5. We start from the standard spherical
functions Y},, (0, ¢) as basis functions of irreducible representations of the group
OQ@3) (see, e.g., Ref.37)

Yim (0, ¢) = (—1)(mFImD/2 {21 +1(+ Iml)!] 2 (sin g)Im|

2 (I—|m|)! 2lml|m|!
B - ! 1 L2 ) 0 4
X9 1(— + |m|,l + |m| + 1;|m| 4+ 1;sin 5) Nors 4.1)
In the contraction limit R — oo we put
tanf ~ 60~ . 1 ~kR 4.2)
anf ~ 60 ~ —, ~ kR. .
R

Using the asymptotic formulas

2 12,2
ngnoo oFy (—kR, kER;|m|+ 1, 4—R2) = oFf (|m| +1; —T) (4.3)
. I(z+a) _
lim ——— = »*°F 4.4
ANTerp @
and formula
T (2) = (3)v71 A(vin-2 4.5)
v - 2 F(l/—f— 1)0 1 3 4 ) .
we obtain
lin =¥ (6, 6) = (~1) AV k) e (46)
iy VR V2

The result (4.6) is not new [37]. The point is that this asymptotic formula
is obtained very naturally in the context of group contractions applied to the
separation of variables.

2. Spherical basis on Sy to Cartesian on E5. We start from the coordinates
(¢',¢") in Eq. (1.64), but drop the primes, and write the corresponding spherical
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functions as

V2l+1 .
Yim(0,0) = T+elm¢(5m 0)Im! x
™
t4m [ D(lEmadyp(lomtl) 1/2
—1)=" 2 2
(=1 {r«—”';“)r(—l ’;*2)}

I-m 1 1.1, .2
o F1 (——2"’,—"”;"’ ; 55C08 9)

X
m— +m+2 l—m+42 1/2
()5 Rreen sy | 2cos02F (~1557 2 8 cos? )
4.7)
for [ +m even and odd, respectively, we now put
| ~ kR, m~ kyR, 9~E, ¢~ﬁ, (4.8)
2 2
and
sinf — 1, cos@—»i, Cos¢—>2. 4.9)
R R

The 2F) hypergeometric functions simplify to oF) ones, the I' functions also
simplify and the final result is that under the contraction we have

1 —k2a?
R oA (57)
k1 3_—k~12x2>

—i(k1z)oF1 (5, 1

lim (—1)_((l+m)/2)Y1m(9,¢) _

R—o0 s

k etk2y
— © { cos k1.2 (4.10)

k_1 VT —isinkix

with k1% + ky> = k2 and for [ + m even and odd, respectively. The parity
properties of Y;,, under the exchange # — 7 — 6 have led to the appearance
of coskjx and sink;x in Eq. (4.10), instead of the usual Cartesian coordinate
solution expi(kix + koy).

Finally note that the factor \/k/k; in formula (4.10) is connected with the
contraction of Kronecker symbols to delta function

1 1k
O — —0(k—k)==—6(ki — k}).
w — 5o( )= g0k = ky)
3. Contraction in interbasis expansions. Let us now consider the contraction
R — oo for the interbasis expansion (1.69). The contraction of basis functions
was presented in the formulas (4.6) and (4.10). In order to obtain the correspond-
ing limit we need the asymptotic behavior of the «little» Wigner d function for a
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large R. It is easy to see that the expression of d function for the angle 7/2 in
terms of hypergeometric functions o F} (see for example [37]) is not applicable
for the contraction limit when ¢ — oo and m — oo simultaneously. To make this
contraction we use an integral representation for the function de my (B) [37]

jm2—m1 (l+m2)'( ) 1/2
o {(l—i—ml)'(l—ml)] .

27 £—my
X / <ei co ﬁ —i(e/2) gin ﬂ) X
0 syt 2

A B A B\
X <ez(‘p/2) cos o +ie?/2gin 5) e"™%dp, (4.11)

sy, (B) =

NS

which for the particular case of 5 = 7/2 can be presented in the following form

l (E) = (~1 )(l ml)/2 [El +ma)!(l - m2)'} i X

ma,my [+ ml) (l — ml).

></ (sin @) =™ (cos @) T2, (4.12)
0

Using now the formulas [44]
cos (2na) = T, (cos 2a), sin (2na) = sin 2aUy,_1(cos 2a),

where Tj(z) and U;(z) are Tchebyshev polynomials of the first and second kind.
After integrating over «, we obtain a representation of the Wigner d function for
angles /2 in terms of the hypergeometrical function 3F5(1)

l—my

By () = A T mi) = mal ¢

+ + + 1/2
149 1 L— 1 +mq+
F( "2L1 )F( "2L1 ) } (7’!?’7,27 ma, Lmy ol ’”21 e

{r<l+;"1+1>r<"-;"1+1>

1) , (I4+m1)—even,

Li+1
X
I+m l—m 1/2 I
2il {F(T1+1)F(Tl+l) . (—m2+17m2+17 1 1) (I+m1)—odd
(+1) F(l+m21+1)F(l,—m2,1+1) 32 %,l+2 5 m1)—odd.
(4.13)
For large R we put
r Y T
ZNICR, mlNkilR, 91N}—%, 0’1’\/}—%, HIQNE, (414)
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where k? = k% + k3. Using the asimptotic formulas for 3F»(1) function (4.3) and
T" function (4.4), we get

. _l=lmy] s 2
ngnoo(_l) 2 \/ﬁdin,g,mq (5) = % X

B\ 1 k4
A LS R T

R\ 3 k+k
—ima <—§> 2 Fy <—m2+1,m2+1;§;71>,

2 cosm
_ (_1\(8mg)/2 2%,
=1 \ 7k {z’sinmgcp, (4.15)

with cos ¢ = k1/k and for (¢ + m) even or odd, respectively.

X

I—|mq|
— el

Multiplying now the interbasis expansion (1.69) by the factor (—1) ,
and taking the contraction limit R — oo we obtain (6 = 02, m = mo)

ik1x COS ka _ - -\ |m| cos my im0
¢ { sin koy } Z (2) { — sinmep }Jm|(/<:7")e ) (4.16)
m=—o00
or in exponential form
eichos(G—cp) _ Z (Z')m Jm(]ﬂ“) eim(e—ga). (4.17)
m=—o00
The inverse expansion is
mo _ (ZO™ [T imp—ikr cos (6
T (kr)emd = 2 / gimy—ikreos (0=¢) g, (4.18)
2 0

For 6 = 0 the two last formulas are equivalent to the well-known formulas in the
theory of Bessel functions [44], namely expansions of plane waves in terms of
cylindrical ones and vice versa.

4.2. Solutions of the Lamé Equation. Let us consider Eq. (1.60) on the
sphere S5 and separate variables in the elliptic coordinates (1.72). We obtain two
ordinary differential equation of the form

dp* 2| p—a1 p—ax p—az) dp

1 A=I{l+1)p B
i {(p— ar)(p — az)(p — as) } =0, (419
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or equivalently

d d
4P VP G~ (U0+ D= b =0, (4.20)
where

P(p) = (p—a1)(p—az2)(p — as).

Equation (4.19) is the Lamé equation in algebraic form. It is a Fuchsian type
equation with 4 regular singularities (at a1, as, a3, and oco) [38-40,45-47].

Its general solution can be represented by a series expansion about any one
of the singular points aj as

oo

W(p) = (p—a1)™/?(p — a2)*/%(p — a3)**/> Y bV (p—ar)!,  @21)
t=0

where we have
aj(aj - 1) =0, 7=1,2,3

and can choose k equal to 1, 2, or 3.
Substituting (4.21) into the Lamé equation (4.19) we obtain a three-term
recursion relation for bf

BB + )+ A= 1+ Danpy™ +
F@+a—1-2)2t+a+1-1)p" =0 (4.22)
with
a=oa1+az+az, ap=0a; —aog b1=0,

1 = 4(a; — ax)(a; — ap)(t+ D)t + o +1/2) (i,j,k cyclic),  (4.23)
Y = = (0 = an) (2t + ax + ;) = (a5 — @) (2t + ak + a;)?.

The expansion (4.21) represents a Lamé function. Since we are interested in
representations of O(3), the sum in ¥ (p) must be a polynomial of order N, i.e.,
we must have

by #0, byy1 =bny2=...=0 (4.24)
for some N. The condition for this is that we have

I=2N+a, (4.25)
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and we obtain a secular equation for the eigenvalues A, i. e., the separation constant
in elliptic coordinates, by requiring that the determinant of the homogeneous linear
system (3.14) for {bg, b1, ... ,by} should vanish. Since N and ! must be integers,
Eq. (4.25) implies that o and [ must have the same parity.

Numerous further properties of the Lamé polynomials, in the context of
representations of the group O(3), in the O(3) D D basis, were established,
e. g., in Refs.38-40.

Here let us just represent the basis functions as

TN (p1, p2) = AQNUN (p1)Y1Y (p2), (4.26)

where A7Y is some normalization constant. The labels p, ¢ take values 1 and
identify representations of Ds. For each value of [ the values of p, ¢, and A label
(21 + 1) different states. Since the given representations (p,q) of Dy can figure
more than once in the reduction of a representation of O(3) corresponding to the
given [, we are faced with a «missing label problem», resolved by the quantum
number A, i.e., the operator @) of Eq. (1.63).

The expansions that we shall use for the Lamé polynomials in (4.26) are as
in Eq. (4.21), but the summation over ¢ is from t =0 to ¢t = V.

4.3. Elliptic Basis on S; to Cartesian Basis on F,;. We choose elliptic
coordinates on Ss as in Eq. (1.72), but with a1 < ag < asg, as in Eq. (3.5). We
write the basis functions as in Eq. (4.26) with

N

Uia(pr) = (o1 — a1) (o1 — a2)°*/2(p1 — a5)*/* Y bV (p1 — ),
t=0
(4.27)

N
Yia(p2) = (p2 — 1)/ (p2 — a2)*/2(p2 — a3)**/2 3" b (p2 — as)"
t=0

as in Eq. (4.21). The coefficients bgj ) (j = 1,2) satisfy the recursion relation
(4.22) and we have N = (I — «)/2. We use the coordinates &; and & introduced
in Eq. (3.7) (for a = a3 — a1 = as — a3). Equation (4.27) reduces to

N
Yin (1) = (—1)(@2 o) 202 (1—g )1 2 (141 )2/ 272 N " Ol (1-81)',

t=0
(4.28)

N
Yia(€2) = (=1)2/%a%/2 (1 — £)2/2 (1 + &£)/265*2 Y~ 021 - &)

t=0
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with CV = atb,, C® = (—a)tb,. The recursion relations (4.22) now imply

8(t+1) (t o+ %) C A+ {pW =202t + a1 + ag)® —
—2t+or+a)?}CM + 2t +a—1-2)2+a+1-1)CY =0, (4.29)
~8(t +1) (t +as+ %) CO 4+ {(1® + +2(2t + a2 + a3)® +
T2+ a1+ )P — 2t +a—1-2)2t+a+1-1)CZ =0,
where

|
e :E[/\—ajl(l—l—l)], j=1,2. (4.30)

The contraction limit is taken using Eq. (3.7) to relate & o to the Cartesian
coordinates on Es. Taking [ ~ kR we find

pM = 2R%E2 4P —2R%K2 k= /K2 + K2 (4.31)

For R — oo the recursion relations (4.29) simplify to two-term ones that can be

solved to obtain
t
: R* AR
o) — B 4.32
¢ (aj+1/2); \ 4 ) ¢ (4.32)

with

1 1 3 3
Oéj"‘a = Oéj+§ Oéj"‘a Oéj—E‘Ft )
t
t>1 4—|—1 =1
= 1, Qi D) 0— .

Substituting (4.3) into (4.28) we obtain

o2 k22
in(&r) = (_1)(a2+a3)/22_a1x0‘10F1 (041 + - L ) )
(4.33)

aa/Q 1 k242
(o) = (UG (an 5= )
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Using now the formula (4.10) we find the contraction limit:

AP (R)ix (€1, &2) — AT (R)bn, (@), (9) = A (=1)°/ 0"

cos k1x cos kay, a; =0,a9 =0
1
——— cos kyx sin kay, a; =0,a0 =1
o R
X 1 (4.34)
_/<:1—R sin k1 x cos kay, ar=1,a0 =0
1
_W sinkizsinksy, a1 =1,a0 =1.

4.4. Elliptic Basis on S, to Elliptic Basis on F,. Let us start from the
elliptic coordinates (1.72) with a1 < p; < a2 < p2 < ag. We take the limit
R — o0, ag — oo with \/@/R, aq and ay finite. We introduce a constant D as
in Eq. (3.2). Elliptic coordinates on the plane F, are introduced via Eq. (3.4),
so that the Cartesian coordinates (z,y) are expressed in terms of the elliptic ones
(&,7m) as in Eq. (1.41). Let us first take the limit in the separated equations (4.19).
Going over to the variables (£,7) from (pi, p2) we obtain for R — oc:

2 2D2 2D2
s + < p— i Gztoi) _ i cos2n ¢ 1 =0, (4.35)
dn? 2 as — ai 2
d2¢2 k2D? az + ay k2D?
— — h?2 = 4.
a2 —l—{u > (ag—al) 5 cos 5}1#2 0 (4.36)

with

= i, I ~EkR.
asz

In (4.35) we recognize the standard form of the Mathieu equation, whereas
Eq. (4.36) is a modified Mathieu equation [41]. Thus, in the contraction limit,
Lamé functions will go over into Mathieu ones. Moreover, periodic solutions of
the Lamé equation go over into periodic solutions of Eq. (4.35).

The contraction limit can also be taken directly in the Lamé polynomials,
using the expansion (4.21) (cut off at ¢t = N). The result that we obtain is

. Uin(p1) o 2(_1)(a2+a3)/2
ngnoow :(a2_a1) / T X

X (cosm)“t (sinn)*? Z Ci(cosn)?, (4.37)
t=0
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/2 (_1)&3/2
Do

. WUn(p2)
ngnoo Ra3

= (ag —al) X

x (cosh§)™ (sinh £)** Y~ Cy(cosh§)*,  (4.38)

t=0

where the expansion coefficients C; satisfy recursion relations obtained from
Eq. (4.22), namely

At +D)(t+1/24a1)Cs + {pn— (2t + a1 + a2)?}Cy — k2 D?*Cy = 0. (4.39)

4.5. Elliptic Basis on S; to Parabolic Basis on E5. Let us consider the
contraction limit for the Lamé equations (4.19). To do this we use equations
(1.76) with az —as = ao—a1 = a, i.e., k =k = 1/\/5 together with Eq. (3.17),
to obtain

u? v2
p1~a1+a(—1+ﬁ), pgwal—l-a(l—l—ﬁ). (4.40)

The equation (4.19) for p = p; and p = py in the limit R — oo, with % ~ k?R?
and A — asl(l + 1) = pRa, yields the two equations

A4y
du?

A1)y
dv?

+ (K*u® + p) =0, + (k*0® — p)o = 0, (4.41)
respectively.

Thus the Lamé equations in the contraction limit go over into the equations
(4.41) for parabolic cylinder functions [44]. The same is of course true for
solutions. The expansion (4.21) is not suitable for the contraction limit. In
view of Eq. (3.17) we need expansions in terms of the variables (1 4+ sn«) and
(1 — v/2dn ). This is not hard to do, following for instance methods used
in Ref.48 to relate the wave functions of a two-dimensional hydrogen atom,
calculated in different coordinate systems. The formulas are cumbersome, so we
shall not present them here.

4.6. Contractions of Basis Functions from I, to E> and E ;

1. Pseudo-spherical basis on Hy to polar basis on E5. The pseudo-spherical
eigenfunctions ¥, (7, ¢) normalized to the Dirac delta-function, have the form:

psinhp 1
Ypm (T, %) =1/ iR r <— +ip+ |m|)

X
2

x Pl (coshr) exp (imeg),  (4.42)
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where m = 0,£1,4+2,... In the contraction limit R — oo we put: tanh7 ~
7 ~71/R, p ~ kR. Rewriting the Legendre function in terms of hypergeometric
function as [49]

I'(1/2+ip+|m|) 1
. 21 X
L'(1/2+1ip— |m]|) |m|12!ml

P™ (coshT) =

ip—1/2

1 .1 . -
X <§+|m|+zp,§—|—|m| —ip;1+ |m|; — sinh? 5)

Then using the asymptotic formula for hypergeometrical function 2F; and I'
function

lim |T'(z+iy) | exp (%|y|) |y|1/2_’” =2, (4.43)

ly|—o0

we obtain in the contraction limit R — oo:

) eim,cp
ngnoo \I//)m(Tv 90) = \/EJ\ml (kr)ﬁ

2. Pseudo-spherical basis on Hy to Cartesian basis on Fp ;. Taking the
Legendre function in Eq. (4.42) in terms of two hypergeometric functions [49]

2/”’1, 1 h —m
P} 1 /o(coshT) = V2" (sinh ) X

r §_m—|—zp r §_m—zp
4 2 4 2

X
1 m+ip 1 m-—ip
()G

3 m4ip 3 m-—ip 3 9
| -- - — - h
) 1<4 5 1 5 ,2,COS T+
1 m+ip 1l m—ip 9
F-- - — - h
+2 1<4 2 74 2 727005 T

Putting for large R

t
p~kR, m~HkR, cothr~ . cotgaN%, k2 4 k2 = k2.
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Using two asymptotic formulas

. 1 m+4+ip 1l m-—ip 1 9
1 (- - — - Z-cosh -
Ao ? 1(4 2 4 2 T

1 242
=of1 (—'—ko—t) = cos (kot),

27 4

_F §._k8t2 :Sin(kot)
Ot 2 g kot

and formula (4.4) we finally obtain

2 . ,
lim VRIT(ip) |y (7, ) = 4/ — elFot=ikrz, (4.44)
R—o0 ko
4.7. Contractions for Equidistant Basis on H,
1. Equidistant basis on Hy to Cartesian basis on Fo. In the equidistant
system the normalized eigenfunctions U, (71,72) have the form:

psinhwp ~1/2 pip iAT
Uon(m, 1) = cosh T P. —tanh ) €72,
(71, 72) \/cosh2 7T\ + sinh? 7rp( ) 1)‘_1/2( )

To perform the contraction we write the Legendre function in terms of hyperge-
ometric function [49]

/2% (cosh 1)~ o
3 3
r(2-a)r(2-
(3-o)r(5-)
11 1 F(__ )FG_6>
X ¢ oFy (—+a,—+b;§;tanh27'1>—I—Ztanhﬁ ( X

o )

3 3
X o F1 (Z —ay —b;—;tanh271> ,

Pif

1A71/2(_ tanh7) =

= W

| =

2

where a = i(p — \)/2; b = i(p + A\)/2. For large R we put p ~ kR, A\ ~ k1 R;
T2 ~ x/R, 11 ~ y/R, where x,y are the Cartesian coordinates. Then using the
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asymptotic formulas:

. RS R T 1 32k
ngnooQFl <4 +a74+b727tanh Tl) *OFl (27 4

. 3 3 3 3 k2 1 .
ngnoogFl <1 8y~ b; i;tamh2 7'1> =0k} (5, —%) @ sin koy,
where k? + k2 = k2, we finally get

. | k . ,
}%LII(l)O\I/,,A(Tl,Tg) =\ g &P (tkiz + ikay).

2. Contraction from equidistant basis on H» to polar on E5 ;. Writting the
Legendre function in terms of hypergeometric functions [49]

> = cos kay,

1
V2T

1 i(p—A) 3 i(p— A ) )
x oFy (Z — ilp 5 )’Z — z(p2 );1 + i); coth? 7'1) +21)‘(C0th7'1)7l)‘+1/2 X

L(i)) JF, (l _Het N 3 et N L o n)}
a4 ’ ’ ’

I(—i))

PX QI ETVESY

A1 /2(tanh 1) =

(sinh 7y )i” {Z_i/\ (coth 7’1)“""1/2 T

“Ta2—ip—N>"\1 2 2

Putting for large R: p ~ kR and coshmy ~ r/R, and using the asymptotic
formulas for hypergeometric functions

lim o Fy (1 - Z(p_/\)7z— Z(p_)\); L+i); Coth271> =

R—o0 4 2 2

=T(1+1i)) (%) - Jix(kr),

. 1 i(p+A) 3 ilp+A) . 9 B
ngnoo o <4 5 1 5 1—4X coth" | =
T\ T
=T(1 - i) (%) J_ix(kr),
we obtain

1 k , ,
lim ﬁ%)‘(a’ ) = \/;Hi(i)(kr)el)\(‘rz+z(7r/2))7

R—o0

where Hl(,l)(z) is the first kind of Hankel function.
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