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ALGEBRAIC STRUCTURES ASSOCIATED TO NAMBU
DYNAMICS
S. Codriansky

Departamento de Matem$aticas y F$*sica, Instituto Pedag$ogico de Caracas, Venezuela

The role of Clifford algebra in the geometric description of the Nambu dynamical system is
discussed.

INTRODUCTION

The study of the geometric description of the dynamical system proposed
by Nambu [4] some time ago has attracted attention lately. The developments
along this line of research have concentrated in the construction of structures that
are similar to the ones found in the geometric description of the Hamiltonian
dynamical system. Phase space is m-dimensional (m even or odd). Let F be the
set of smooth functions over phase space. A Nambu manifold is deˇned once
a multilinear operation {A1, . . . , An} (2 ≤ n ≤ m) over F is postulated which
satisˇes

{A1, . . . , Ai, Ai+1, . . . , An} = −{A1, . . . , Ai+1, Ai, . . . , An},
{A1, . . . , Ai +Bi, . . . , An} =

= {A1, . . . , Ai, . . . , An} + {A1, . . . , Bi, . . . , An},
{A1, . . . , AiBi, . . . , An} =

= {A1, . . . , Ai, . . . , An}Bi +Ai{A1, . . . , Bi, . . . , An},
{{A1, . . . , An}, B2, . . . , Bn} =

=
n∑

i=1

{A1, . . . , Ai−1, {Ai, B2, . . . , Bn}, Ai+1, . . . , An}.

(1)

The last line in (1) is called the Fundamental Identity (FI); it is the generalization
of the Jacobi identity to which it reduces when n = 2. The dynamical system
proposed in [4] did not include FI as part of its deˇnition; this identity was
introduced in [6Ä8]. In [7] an algebraic description of the Nambu dynamical
system is presented and called of type I if FI is not included and of type II if FI
is included.
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Remark: FI is identically satisˇed only if there is a single multiplet in phase
space; in this case the Nambu bracket is a Jacobian of order m

[F1, . . . , Fm] =
∂(F1, . . . , Fm)
∂(x1, . . . , xm)

. (2)

If phase space is spanned by N multiplets of dimension S, FI is not an identity
and is an extra condition to be satisˇed.

The geometric study of the Nambu system has, however, overlooked some
difˇculties that follow from the antisymmetry of the exterior product. The source
of this difˇculty stems from the fact that if m = 3N and phase space is considered
as spanned by a set of N triplets, then the evolution equations of the coordinates
x = (x1, . . . , x3N ) should be obtained from the canonical 3-form

ω =
N−1∑
i=0

dxi+1 ∧ dxi+2 ∧ dxi+3, (3)

but due to the antisymmetry of the exterior product all powers of ω vanish. As
a consequence, the Liouville condition

∑
∂ẋi/∂xi = 0 [2] which describes the

invariance of the volume form cannot be related to ω. The requirement that the
Nambu equations of motion be derived from

ivω = dF ∧ dG, (4)

where F and G are the generalized Hamilton functions, called in the sequel
Nambu functions, is inconsistent since on the right-hand side there are terms that
include dxi ∧ dxj , i �= j + 1, j + 2, j + 3, while on the left-hand side there are
no such terms. These problems have been partially solved in [3] introducing
a ®partial diferential¯ d(i), (d = d(1) + . . .+ d(N)), which acts on the ith triplet
indices (i + 1, i+ 2, i+ 3). The vector ˇeld is also considered as a sum of terms
v(i) each of which is a sum of derivatives with respect to (i+ 1, i+ 2, i+ 3);
the ®partial¯ vector ˇeld v(i) reproduces, after contraction with the fundamental
3-form, the Nambu dynamical equations for the ith triplet coordinates through

iv(i)(ω) = d(i)H1 ∧ d(i)H2. (5)

The Lie derivative of ω(i) = dxi+1 ∧ dxi+2 ∧ dxi+3 does not vanish and therefore
neither the Lie derivative of the canonical 3-form. To compute higher powers
the procedure in [3] goes as follows: deˇne ω2 = ω(1) ∧ ω(2) and so on until the
volume form ωN = ω(1) ∧ ω(2) . . . ∧ ω(N) is obtained. It turns out that the Lie
derivative of ωk is different from zero for k = 1, . . . , N − 1 while it vanishes
for k = N as a consequence of the Liouville condition.

In order to recover the property that the different powers of the canonical
3-form do not vanish and that its powers deˇne constants of the motion, a
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modiˇcation of the exterior product has been proposed in [5] and [1] where
a partial reformulation of the differential operation, the contraction and the Lie
derivation has been proposed with the result that a consistent scheme has emerged
in the sense that the desired properties are present: all powers of the canonical
form are nonzero, they deˇne integral invariants and the maximum nonzero form
is the volume form. The modiˇcation of the exterior product adds a symmetric
part and this feature extends to all operations (details in Sec. 1).

In this paper a particular realization of the scheme constructed along the lines
described previously is presented. This particular realization is accomplished
deˇning a set of variables that are noncommutative. The noncommutativity is
associated to a set of algebraic operators that satisfy the Clifford algebra commu-
tation relations.

1. EXTENDED EXTERIOR CALCULUS

To proceed with the modiˇcation of the exterior calculus two sets of variables
are introduced: those that span phase are x = ((xα

1 , x
α
2 , x

α
3 ), α = 1, . . . , N),

where the upper index labels a particular triplet; and the lower, its place within
the triplet; these variables are real and evolve in time according to the Nambu
equations of motion [4]

dxα
i

dt
=

∂(xα
i , F,G)

∂(xα
1 , x

α
2 , x

α
3 )
, (6)

where ∂(. . . )/∂(. . . ) is a third order Jacobian; F and G are the Nambu functions
for the dynamical system which are given as input data.

If the variables are grouped in N multiplets of order S (m = NS), then the
Jacobians are of order S and S − 1 Nambu functions have to be provided. The
evolution equations for the phase space variables are

dxα
i

dt
=

∂(xα
i , N1, . . . , NS−1)
∂(xα

1 , . . . , x
α
S)

(7)

and for an arbitrary function K

dK

dt
=

N∑
α=1

∂(K,N1, . . . , NS−1)
∂(xα

1 , . . . , x
α
S)

= {K,N1, . . . , NS−1} (8)

which deˇnes the Nambu bracket {K1, . . . ,KS}. In the particular case of N
triplets

{A,B,C} =
N∑

α=1

∂(A,B,C)
∂(xα

1 , x
α
2 , x

α
3 )
. (9)
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Remark: the properties listed in (1) do not require that the dimension of the
multiplets divide the dimension of phase space. If phase space is four-dimensional
a terciary bracket can be constructed deˇning it as in (9) but summing over all
four subsets of three variables.

A second set y = ((yα
1 , y

α
2 , y

α
3 ), α = 1, . . . , N), yα

i = Pαzα
i , is introduced

where the Pα satisfy

PαP β + P βPα = 2δαβ (10)

and the zα
i are real variables; z = (z1

1 , z
1
2 , z

1
3 , . . . , z

N
3 ). The yα

i are noncommu-
tative; in fact, yα

i y
β
j = (−1)δαβ+1yβ

j y
α
i . The manifold considered in this case

is the set of functions over R3N ⊗ C(N), where C(N) is the Clifford algebra
generated by the Pα.

An arbitrary function F (y) is written in terms of the real variables z in

the form F (y) =
∑

A FA(z)PA, where FA(z) is a real function labelled by the
multi-index A = (α1, . . . , αA) with 1 ≤ αi < αj ≤ N if i < j (this deˇnes strict

ordering); PA = Pα1 . . . PαA and if A = 0, P 0 is the identity I.
∑

A is a sum
over all (N

A ) sets of A α's and a sum over A = 0, 1, . . . , N . As a result F (y)
is represented by the set of 2N real functions (F0, (F )1, (F )2, . . . , (F )N ), where
(F )A is the set of (N

A ) functions with a ˇxed value of A. It is in terms of the yα
i

that the modiˇcation of the exterior calculus will be realized.
The extended exterior product (eproduct) is deˇned for 1-forms (called ex-

tended 1-forms or eforms) θα, θβ by

θα ∧ θβ = (−1)δαβθβ ∧ θα, (11)

where α and β are multiplet indices. It is straightforward to give a precise
deˇnition of this product antisymmetrizing and symmetrizing tensor products.

The basic 1-eforms are dyα
i = Pαdzα

i ; for these (11) is clearly satisˇed. The
extended differential of a function f(y) is deˇned by

df(y) = ∂
i

αf(y)dyα
i =

∑

A

dfA(z)PA =
∑

A

∂i
αfA(z)dzα

i P
A. (12)

If f(y) reduces to a function along the identity (fA = 0 if A �= 0), it follows
from (12)

∂
i

αf(y) = Pα∂i
αf0(z), (13)

this relation between the two operations will be taken to be valid in general.

With these deˇnitions it follows that ∂
i

α∂
j

βf(y) = (−1)δαβ+1∂
j

β∂
i

αf(y) and

d(df(y)) = 0. To prove the relation between the second partials consider a
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monomial (yα
i )µ(yβ

j )ν ; then

∂
i

α(∂
j

β(yα
i )µ(yβ

j )ν) = µν(−1)µ(δαβ+1)(yα
i )µ−1(yβ

j )ν−1,

∂
j

β(∂
i

α(yα
i )µ(yβ

j )ν) = µν(−1)(µ−1)(δαβ+1)(yα
i )µ−1(yβ

j )ν−1
(14)

which proves the result for this particular monomial; if other factors multiply
it, the result is the same after moving (yα

i )µ(yβ
j )ν to the left and ˇnally, by

linearity the result follows for an arbitrary function which is represented by a
series expansion. The same is obtained when the computation is performed with
z instead of y. Once this is proved, dd = 0 follows after acting on a function
f(y)

d(df(y)) = ∂
i

α∂
j

βf(y)dyβ
j ∧ dyα

i (15)

again, the same follows using z instead of y.

Consider two vector ˇelds U i
α = f(y)∂

i

α, V j
β = g(y)∂

j

β with f(y) and g(y)
functions along the identity. These satisfy, when acting on a function F = F (y),

[V j
β , U

i
α]F = V j

β (U i
α(F )) − (−1)δαβ+1U i

α(V j
β (F ))

= P βPα
(
g∂j

βf∂
i
α − f∂i

αg∂
j
β

)
F (16)

which shows that the vector ˇelds satisfy an algebra deˇned by the bracket

[V j
β , U

i
α]F = V j

β (U i
α(F )) − (−1)δαβ+1U i

α(V j
β (F )). (17)

If α = β, the bracket is a commutator. In the general case f(y) = fA(z)PA,

g(y) = gB(z)PB , A = (a1, . . . , aA), B = (b1, . . . , bB) with A and B ˇxed

multi-indices; then the actions of U i
α and V j

β on F (y) = FC(z)PC are

V j
β [U i

α(F )] = gB∂
j
β(fA∂

i
αFC)PBP βPAPαPC ,

U i
α[V j

β (F )] = fA∂
i
α(gB∂

j
βFC)PAPαPBP βPC .

(18)

The commutation of PA and PB gives

PAPB = (−1)σ(AB)PBPA, (19)

where σ(AB) =
∑A

i=1

∑B
j=1(δaibj + 1). With this result it follows that

[V j
β , U

i
α]F = V j

β [U i
α(F )] − (−1)σ(AB)+σ(αB)+σ(βA)+σ(αβ)U i

α[V j
β (F )]

= PBP βPAPα
(
gB∂

j
βfA∂

i
α − fA∂

i
αgB∂

j
β

)
F. (20)
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The generalized bracket (20) is a commutator if σ(AB) + σ(αB) + σ(βA)+
σ(αβ) = 0 (mod 2), which holds if PAPαPBP β− PBP βPAPα = 0.

The contraction is deˇned by ivγ = P γ ivγ so that

iv(dyα
i ) = vα

i (z) (21)

and when acting with iv on a 2-eform

ivγ (dyα
i ∧ dyβ

j ) = ivγ (dyα
i )∧ dyβ

j + (−1)δαγdyα
i ∧ ivγ (dyβ

j ). (22)

It is seen that it is necessary to deˇne the action of the extended contraction, or
econtraction, on up to a 2-eform. In the same way as before, the action of the
contraction on a 1-eform θ = θAi

α PAdxα
i with the vector ˇeld vγ includes the

sign (−1)σ(γA) in each of the summands in θ.

2. THE VECTOR FIELD FOR NAMBU DYNAMICS

The determination of the vector ˇeld v is done once the canonical 3-eform
ω =

∑
α P

αdzα
1 ∧ dzα

2 ∧ dzα
3 is given. It has to satisfy

ivω =
1
2
(dH ∧ dG− dG∧ dH) (23)

and its components are obtained requiring that the summands in the right-hand side

of (23), that involve dxα
i ∧ dxβ

j with α �= β, vanish. Using dH = ∂i
αHAdz

α
i P

A,

dG = ∂j
βGBdz

β
j P

B it is found

1
2
(dH ∧ dG− dG∧ dH) =

1
2
(PAPB + PBPA)∂i

αHA∂
j
βGBdz

α
i ∧ dzβ

j . (24)

The particular case of two triplets is exhibited as an illustration. In this case

H = H0 +H1P
1 +H2P

2 +H12P
1P 2,

G = G0 +G1P
1 +G2P

2 +G12P
1P 2

(25)

which leads to

1
2
(dH ∧ dG− dG∧dH) =

= [(∂i
αH0∂

j
βG0 + ∂i

αH1∂
j
βG1 + ∂i

αH2∂
j
βG2 − ∂i

αH12∂
j
βG12) +

+P 1(∂i
αH0∂

j
βG1 + ∂i

αH1∂
j
βG0) + P 2(∂i

αH0∂
j
βG2 + ∂i

αH2∂
j
βG0)+

+ P 1P 2(∂i
αH0∂

j
βG12 + ∂i

αH12∂
j
βG0)]dzα

i ∧ zβ
j (26)
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which for α �= β gives the following set of equations

∂i
αH0∂

j
βG0 − ∂j

βH0∂
i
αG0 + ∂i

αH1∂
j
βG1 − ∂j

βH1∂
i
αG1 + ∂i

αH2∂
j
βG2−

−∂j
βH2∂

i
αG2 − ∂i

αH12∂
j
βG12 + ∂j

βH12∂
i
αG12 = 0, (27)

∂i
αH0∂

j
βG1 − ∂j

βH0∂
i
αG1 + ∂i

αH1∂
j
βG0 − ∂j

βH1∂
i
αG0 = 0, (28)

∂i
αH0∂

j
βG12 − ∂j

βH0∂
i
αG12 + ∂i

αH12∂
j
βG0 − ∂j

βH12∂
i
αG0 = 0, (29)

∂i
αH0∂

j
βG1 − ∂j

βH0∂
i
αG1 + ∂i

αH1∂
j
βG0 − ∂j

βH1∂
i
αG0 = 0. (30)

It is possible to take H1 = H2 = G1 = G2 = 0 and consider the functions H0

and G0 as given. The various derivatives of H12 and G12 are determined by the
above set of equations. Replacing this result in the set obtained by equating α
and β it is found that the unique form of the components of the vector ˇeld is

vα
i =

∂(H0, G0)
∂(xα

j , x
α
k )

(31)

(i, j, k) cyclic. The result is that the vector ˇeld is along the identity and
its components are precisely the ones corresponding to the Nambu dynamical
system. The Nambu vector ˇelds satisfy, therefore, a Lie algebra and moreover,

they do not take a particular PA out of C(A). The action of the Nambu vector
ˇeld separates the set of monomials with a ˇxed value of A in a subspace that
is invariant under evolution and under the action of the orthogonal group in the
Clifford space. The subset R3N ⊗ C(A) corresponds to a leaf of the Nambu
dynamical system; its dimension is 3N(N

A ).
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