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APPLICATIONS OF CLASSICAL AND QUANTUM
ALGEBRAS TO MOLECULAR THERMODYNAMICS

M.Angelova

School of Computing and Mathematics, University of Northumbria, Newcastle upon Tyne, UK

Lie-algebraic and quantum-algebraic techniques are used in the analysis of thermodynamic
properties of molecules and solids. The local anharmonic effects are described by a Morse-like
potential associated with the su(2) algebra. A vibrational high-temperature partition function and
the related thermodynamic potentials are derived in terms of the parameters of the model. Quantum
analogues of anharmonic bosons, q bosons, are introduced and used to describe anharmonic properties
of molecules and solids. It is shown that the quantum deformation parameter is related to the ˇxed
number of anharmonic bosons and the shape of the anharmonic potential. A new algebraic realization
of the q bosons, for the case of q being a root of unity, is given. This realization represents the
symmetry of a linear lattice with periodic boundary conditions.

INTRODUCTION

The algebraic approach has been developed as an alternative to ab initio and
Dunham-like approaches to describe the molecular vibrational degrees of free-
dom [1,2]. The algebraic approach provides the energy as an analytic function of
the quantum numbers. The Hamiltonian is written as an algebraic operator using
the appropriate Lie algebras. The technical advantage of the algebraic approach is
the comparative ease of the algebraic operations. Equally important is the result
obtained by comparison with the experiment, that there are generic forms of alge-
braic Hamiltonians and that entire class of molecules can be described by common
Hamiltonian where only the parameters are different for different molecules. In
its initial stage of development [3Ä6], the algebraic approach has sought to show
why and how it provides a framework for the understanding of large-amplitude
anharmonic motion. The anharmonicities are introduced by means of dynamical
groups that correspond to anharmonic potentials and which constrain the total
number of levels to a ˇnite value. The current algebraic models [7Ä9] combine
Lie algebraic techniques, describing the interatomic interactions, with discrete
symmetry techniques associated with the local symmetry of the molecules. In
the anharmonic oscillator symmetry model [7], the local internal coordinates are
given in terms of u(2) algebras. The u(2) interactions correspond to anharmonic
coupling of anharmonic oscillators which approximate the interactions between
the Morse oscillators.
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The algebraic anharmonic model has been developed to analyze molecular
vibrational spectra [1Ä9]. It provides a systematic procedure for studying vibra-
tional excitations in a simple form by describing the stretching and bending modes
in a uniˇed scheme based on u(2) algebras which incorporate the anharmonicity
at the local level.

The success of the algebraic models in the analysis of molecular vibrational
spectra has led to the development of similar models for molecular thermodynam-
ics. Kusnetzov [10] has used an algebraic approach, based on approximation of
the classical density of states, to study thermodynamic properties of polyatomic
molecules. Angelova and Frank [11Ä13] have applied the algebraic model [1, 7]
to the vibrational high-temperature thermodynamics of diatomic molecules and
derived the vibrational partition function and the important thermodynamic func-
tions, such as mean energy and speciˇc heat, in terms of the parameters of the
model.

The Morse-like potential, which represents the anharmonicities at the local
level, leads to a deformation of the harmonic oscillator algebra. Angelova, Do-
brev, and Frank [15] have derived this deformation using quantum analogue of
the anharmonic oscillator. We have described the anharmonic vibrations as anhar-
monic q bosons using ˇrst-order of the expansion of a quantum deformation and
found relations between the parameters of the algebraic model and the quantum
deformation parameter.

The aim of this paper is to review the applications of the classical and quan-
tum algebras to molecular thermodynamics. In Section 1, the framework of the
algebraic model is given. The vibrational partition function and the related ther-
modynamic functions, such as mean energy, speciˇc heat and the mean number
of the anharmonic bosons, are discussed in Section 2. The anharmonic q bosons
are discussed in Section 3. A q-bosonic deformation of ˇrst order is considered
and it is shown that the corresponding quantum deformation parameter is related
to the shape of the anharmonic potential well and the ˇxed number of anharmonic
bosons. The q bosons at roots of unity, which give rise to a ˇnite-dimensional pe-
riodic structure are discussed and their applications to a linear lattice with periodic
boundary conditions are given.

1. ALGEBRAIC MODEL

The algebraic model [1] exploits the isomorphism of su(2) algebra and the
one-dimensional Morse oscillator. The one-dimensional Morse Hamiltonian can
be written in terms of the generators of su(2),

HM =
A

4

(
N̂ 2 − 4Ĵ2

Z

)
=
A

2
(Ĵ+Ĵ− + Ĵ−Ĵ+ − N̂ ), (1)
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where A is a constant dependent on the parameters of the Morse potential. The
eigenstates, |[N], v〉 ,

|[N ], v〉 =

√
(N − v)!
N !v!

(J−)v |[N ], 0〉 (2)

correspond to the u(2) ⊃ su(2) symmetry-adapted basis, where N is the total
number of bosons ˇxed by the potential shape, and v is the number of quanta
in the oscillator, v = 1, 2, . . . , [N/2]. These wave functions can be further
symmetry-adapted to the local symmetry of the molecules in a way described for
example in [7].

The value of N is dependent on the depth D and the width d of the Morse
potential well [7],

N + 1 =
(

8µDd2

�2

)1/2

, (3)

where µ is the mass of the oscillator. The parameters A and N are related to
the usual harmonic and anharmonic constants ωe and xeωe used in spectroscopy
[3,4, 14],

ωe = A(N + 1) = �

(
2D
µd2

)1/2

, xeωe = A =
�2

2d2D
. (4)

The anharmonic effects are described by anharmonic boson operators [1],

b̂ =
Ĵ+√
N
, b̂† =

Ĵ−√
N
, v̂ =

N̂
2

− Ĵz, (5)

where v̂ is the Morse phonon operator with an eigenvalue v. The operators
satisfy the commutation relations,[

b̂, v̂
]

= b̂,
[
b̂
†
, v̂
]

= −b̂† ,
[
b̂, b̂

†
]

= 1 − 2v̂
N . (6)

The harmonic limit is obtained when N → ∞, in which case
[
b̂, b̂

†
]
→1

giving the usual boson commutation relations.
The Morse Hamiltonian can be written in terms of the operators b̂ and b̂

†
,

HM ∼ 1
2

(
b̂b̂

†
+ b̂

†
b̂
)

(7)

which corresponds to vibrational energies

εv = �ω0

(
v +

1
2
− v2

N

)
, v = 1, 2, . . . ,

[
N
2

]
, (8)
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where ω0 is the harmonic oscillator frequency. Thus, the spectrum of the Morse
potential leads to a deformation of the harmonic oscillator algebra. A more
detailed relationship between the Morse coordinates and momenta and the su(2)
generators can be derived through a comparison of their matrix elements [9].
Note that for an inˇnite potential depth, N →∞, the Morse potential cannot be
distinguished from the harmonic potential.

2. THERMODYNAMIC VIBRATIONAL FUNCTIONS

2.1. Vibrational Partition Function. In the anharmonic algebraic approach,
the vibrational partition function of a diatomic anharmonic molecule is

ZN =
[N/2]∑
v=0

e−βεv , (9)

where β = 1/kBT ; the vibrational energies εv are given by equation (8), and N
is the ˇxed total number of anharmonic bosons discussed in the previous section.
Introducing new parameters, α = (β�ω0)/2, N0 = [N/2] and l = N0 − v, the
exact value of vibrational partition function can be written as,

ZN = e−α
N0∑
l=0

e−(α/N0)(N 2
0 −l2). (10)

At high temperatures T , for N0 large and α small, the sum can be replaced by
the integral,

ZN =

√
N0

α
e−α(N0+1)

√
αN0∫
0

es2
ds, (11)

where s =
√

(α/N0)l. This integral can be evaluated exactly in terms of the
error function, erf i

(√
αN0

)
(as deˇned in [16]),

ZN =
1
2

√
N0π

α
e−α(N0+1)erf i

(√
αN0

)
. (12)

Equation (12) represents the high-temperature value of the vibrational partition
function in the Morse-like spectrum. The partition function is expressed in terms
of the parameters of the algebraic model N0 and α. When N0 → ∞, the harmonic
limit of the model is obtained,

Z∞ ∼ N0e−α

2αN0 − 1
∼ e−α

2α
=

T

Θ
e−(Θ/2T ) (13)
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which coincides with the harmonic vibrational partition function of a diatomic
molecule at high temperatures. Here, Θ = �ω0/kB , is the usual characteristic
vibrational temperature of the molecule and the model parameter α = Θ/2T . The
expression for the partition function (12) can be further generalized for polyatomic
molecules.

Fig. 1. Vibrational partition function Z56 as
a function of α

Using the values of the harmonic
and anharmonic constants [14] for the
zero lines of the diatomic molecule
1H35Cl and the equations (3) and (4), we
obtain the total number of anharmonic
bosons, ˇxed by the shape of the Morse
potential, N = 56, and the total number
of quanta in the oscillator, N0 = 28.
The characteristic vibrational tempera-
ture of the molecule is Θ = 4300 K.

Substituting the value of N0 = 28
in equation (12) we can calculate the
partition function, Z56, for the molecule
1H35Cl as a function of the parameter α. The anharmonic effects are essential at
the high temperatures T ≥ Θ, i. e., α ≤ 0.5. The graph on Fig. 1 represents the
partition function Z56 given by equation (12) for the values of the parameter α
between 0 and 0.5 (solid line). The exact partition function from equation (10) is
given for comparison (dashed line). It is clear, that the integral approximation is
in a very good agreement with the exact representation and does not change the
value and appearance of the partition function.

2.2. Mean Vibrational Energy. The mean vibrational energy is given by

UN = − ∂

∂β
lnZN = − �ω0

2ZN

∂ZN
∂α

. (14)

Taking into account that

∂ZN
∂α

= −ZN
2α

− (N0 + 1)ZN +
N0 e−α

2α
, (15)

we obtain the following expression for the mean vibrational energy in terms of
the partition function ZN ,

UN =
�ω0

2

(
1 + N0 +

1
2α

− N0 e−α

2αZN

)
. (16)
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Substituting ZN with equation (12) gives the following expression for the mean
energy, UN , in terms of the parameter α,

UN =
�ω0

2

(
1 + N0 +

1
2α

−
√

N0

απ

eαN0

erf i
(√

αN0

)) . (17)

The harmonic limit is obtained from equation (16), when N0 → ∞ and ZN is
given by (13),

U∞ ∼ �ω0

2

(
1 +

1
α

)
∼ �ω0

2
+ kBT. (18)

This is the classical mean energy of a diatomic molecule at very high temperatures.
2.3. Speciˇc Heat. The vibrational part of the speciˇc heat is,

CN =
∂UN
∂T

= − �ω0

2kBT 2

∂UN
∂α

. (19)

Substituting UN with equation (16) and using equation (15), we obtain

CN =
kB

2
+
kBN0 e−α

2ZN

(
αN0 −

1
2
− N0 e−α

2ZN

)
. (20)

The equation (20) represents the vibrational speciˇc heat in the algebraic model
in terms of the partition function ZN . Substituting ZN with (12) in the equation
(20), we obtain the dependence of the speciˇc heat CN on the parameters of the
model α and N0,

CN =
kB

2
+ kB

√
αN0

π

eαN0

erf i
(√

αN0

) (αN0 −
1
2
−
√
αN0

π

eαN0

erf i
(√

αN0

)) .

(21)

When N0 → ∞, the harmonic limit of the model gives the vibrational
speciˇc heat of a diatomic molecule at very high temperatures,

C∞ ∼ kB. (22)

2.4. Mean Number of Anharmonic Bosons. The mean vibrational energy
in the anharmonic model can be written in terms of mean number 〈νN 〉 of
anharmonic quanta, each with energy �ω0,

UN = �ω0

(
〈νN 〉 +

1
2

)
. (23)
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Substituting UN by equation (16), we obtain 〈νN 〉 in terms of the partition
function ZN ,

〈νN 〉 =
N0

2
+

1
4α

− N0 e−α

4αZN
. (24)

Using the expression (12) in equation (24), we obtain the high-temperature value,

〈νN 〉=N0

2
+

1
4α

−
√

N0

4πα
eαN0

erf i
(√

αN0

) . (25)

The harmonic limit is obtained from equation (24) when N0 → ∞ and ZN is
given by the expression (13),

〈ν∞〉 ∼ kBT

�ω0
. (26)

The graph of the function 〈ν56〉 for the molecule 1H35Cl is given on Fig. 2 (solid
line). The harmonic limit 〈ν∞〉 is given for comparison (dashed line).

Fig. 2. Mean number of anharmonic bosons ν56 as a function of α

3. APPLICATIONS OF q BOSONS

3.1. Anharmonic q Bosons. We have shown in [15] that the anharmonic
bosons b, b† from equations (5) can be obtained as an approximation of the q
bosons [17Ä19]. The q bosons, enter the HeisenbergÄWeyl q-algebra HWq by
the following commutation relations:

[a, a†] = qn̂, [n̂, a] = −a, [n̂, a†] = a†, (27)
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where the deformation parameter q is in general a complex number. When q = 1,
the boson commutation relations of the harmonic oscillator are recovered.

A possible Hamiltonian for the system (27) is:

H =
1
2
(aa† + a†a) =

1
2
C +

1
2
qn̂+1 + qn̂ − 2

q − 1
, (28)

where the Casimir operator C can be written in the form:

C = aa† + a†a− qn̂+1 + qn̂ − 2
q − 1

(29)

and satisˇes the commutation relations

[C, a] = [C, a†] = [C, n̂] = 0. (30)

As shown in [15], the anharmonic bosons (6) can be obtained from the q
bosons (27) for real values of the deformation q close to 1, q < 1, using an
expansion of ˇrst order of q in terms of a parameter p, p ≡ 1/(1 − q),

qn̂ = 1 − n̂

p
, (31)

where 1/p � 1. If we now substitute the approximation for qn̂ from equation
(31) in the commutation relations (27) and identify the parameter p with N/2, n̂
with v̂ and the creation and annihilation operators a, a†, with b, b†, respectively,
we recover the su(2) anharmonic relations (6).

For q ≤ 1, the case of harmonic and anharmonic vibrations in molecules
and solids is retrieved. The form (6) of the su(2) commutation relations can
be considered as a deformation of the usual (harmonic oscillator) commutation
relations, with a quantum deformation parameter p = N/2.

This gives a physical interpretation of the quantum deformation. The quantum
deformation parameter p is the ˇxed number N0 of the anharmonic bosons in the
oscillator. Using the relation between the ˇxed number of anharmonic bosons
N and the characteristics of the Morse potential (3), we can conclude that the
quantum deformation parameter is also determined by the depth, the width and in
general the shape of the Morse potential well. For the molecule 1H35Cl, p = 28
and q = 27/28. Substituting N0 = p in the expressions (12), (17), (21) and (25),
we obtain the thermodynamic properties of diatomic molecules in terms of the
deformation parameter p.

The case q > 1 is also very interesting and is related to BoseÄEinstein
condensation and super\uidity [23Ä25].
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3.2. q Bosons at Roots of Unity. In [15], we have presented a new algebraic
realization of the q bosons, for the case of q being a root of unity, qN ≡ 1
(integer N > 1), which corresponds to a periodic structure described by a ˇnite-
dimensional representation. Note that the integer N in this section is not related
in general to the total number of bosons N in the previous sections.

We consider the operator K ≡ qn̂ with commutation relations,

[a, a†] = K, K a = q−1 aK, K a† = q a†K. (32)

|〉 is the vacuum state which is annihilated by the operators lowering the
boson number and is an eigenvector of the number operator:

a |0〉 = 0, K |〉 = qµ|0〉, (or n̂|〉 = µ|0〉), (33)

where µ in the generic case is an arbitrary complex number. The states of the
system are built by applying the operators raising the boson number:

|k〉 ≡ (a†)k |0〉 . (34)

The action of the algebra on the basis |k〉 is:

K|k〉 = qµ+k|k〉, a|k〉 = qµ q
k − 1
q − 1

|k − 1〉, a†|k〉 = |k + 1〉. (35)

The representation space, Vµ, is inˇnite-dimensional for a generic deformation
parameter.

Now, let q is a nontrivial root of unity, i. e., qN = 1 for integer N > 1. In
this case we have:

a |N〉 = qµ qN − 1
q − 1

|N − 1〉 = 0. (36)

All states |k〉 with k ≥ N form an inˇnite-dimensional invariant subspace,
Iµ. We then obtain a ˇnite-dimensional representation space, which is the factor-
space, Fµ = Vµ/Iµ, with dimension N . Considering the action of the algebra on
the states, |k+mN〉, for ˇxed k < N and for all non-negative integer m, we have
shown in [15] that the structure is periodic, i. e., the action of the algebra on all
states |k+mN〉 (for ˇxed k) coincides. Thus, it is sufˇcient to consider the states

|k〉 with k < N . Let us denote these identiˇed states by |̃k〉, k = 0, . . . , N − 1.
They form a ˇnite-dimensional representation space F̃µ with dimension N . The
action of the algebra on these states is:

K |̃k〉 = qµ |̃k〉, a|̃k〉 = qµ q
k − 1
q − 1

˜|k − 1〉, a† |̃k〉 = ˜|k + 1〉, k < N − 1,

a† ˜|N − 1〉 = |̃0〉, |̃0〉 ≡ |̃N〉.
(37)
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This represents a ˇnite-dimensional system, where the boson number lowering

operator acts in the usual way (in particular, it annihilates the vacuum state |̃0〉),
but the boson raising operator acts cyclicly. It has a nonzero action on all states
and the vacuum state may be obtained not only by the action of the lowering
operator but also by the action of the raising operator producing a jump from
˜|N − 1〉 to |̃0〉. One realization of this operator is a two-level system, obtained for
N = 2 (equivalent to q = −1, fermions). For N > 2, systems with ˇnite number
of levels and population inversion are illustrations of possible action of these
operators. In [26] the objects ®quons¯ (qN = 1) are introduced as interpolating
between fermions (N = 2) and bosons (N → ∞).

For large N periodicity of the type decribed above appears in crystals. We
have shown that it represents the periodic boundary conditions, ˇrst proposed by
Born and von Kàrmàn [27]. The periodic boundary conditions [28] are imposed
on the translational symmetry, which strictly speaking is a property of an inˇnite
crystalline lattice, to allow its use for ˇnite crystals. The periodic boundary
conditions determine the number of the allowed wave-vector states in the Brillouin
zone model and imply additional selection rules on certain frequencies.

For the classic example of a linear lattice of identical particles with periodic
boundary conditions, the equilibrium positions of the particles are given by tn =
nt, n = 0, 1, . . . , N − 1, and the periodic boundary condition requires tN ≡
t0 ≡ 0, where t is the vector of primitive translations and N is a large positive
number.

The symmetry operations of the linear lattice form a cyclic ˇnite group of
order N with a generator, the primitive translation {E|t}. Here, the Seitz notation
is used to represent a translation and E is the identity, E ≡ {E|0}.

The nth element of the group is

{E|t}n = {E|tn}, n = 1, 2, . . . , N − 1. (38)

The product of two elements of the group is an element of the group

{E|tm}{E|tn} = {E|tm+n}, m, n = 1, 2, . . . , N − 1, (39)

where m+ n ≡ (m+ n) (modN). The identity is

{E|t}N ≡ {E|t0} ≡ {E|0}. (40)

Using the action (37) of the operator a† on the states |̃k〉, we have shown that the
raising operator a† is isomorphic to the generator {E|t}.

Thus, the symmetry group of the lattice with periodic boundary conditions is
isomorphic to the ˇnite cyclic group of order N with a generator, the operator a†.
This group can be used with the other symmetry operations of one-dimensional
crystalline or polymer Hamiltonians. The boundary conditions can be generalized
for the three-dimensional case by introducing raising operators for each dimension.
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CONCLUSION

In this paper, we have used the classical and quantum algebras to study
the vibrational thermodynamic properties of molecules and solids. The algebraic
approach is applied to those thermodynamic properties of diatomic molecules
which at high temperatures strongly depend on the anharmonic effects. The
vibrational thermodynamic functions, such as partition function, mean energy and
speciˇc heat, are derived in terms of the parameters of the algebraic model and
their properties are discussed.

The application of a q algebra to physical problems is often lacking an ap-
propriate interpretation for the deformation parameters and often applications are
carried out where generalization to q-deformed versions of well-known models
are made with no simple interpretation. We have shown that the 1/p approxi-
mation leads to the su(2) algebra and to an interpretation of p in terms of the
Morse potential anharmonicity. We have found a physical interpretation of the
quantum deformation, showing that the deformation parameter is related to the
ˇxed number of anharmonic bosons and the shape of the Morse potential. We
have found that all vibrational thermodynamic properties (e. g., mean energy, spe-
ciˇc heat, mean number of anharmonic bosons) of the molecules depend on the
corresponding quantum deformation parameter.

A new application of the HWq algebra when q is a root of unity is discussed,
which gives a periodic structure described by a ˇnite-dimensional representation.
The raising operator belonging to this structure generates a group isomorphic
to the symmetry group of a linear lattice with periodic boundary conditions.
The latter may provide a useful framework for the deformation of crystalline or
polymer Hamiltonians.
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