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PHYSICAL INSTANCES OF NONCOMMUTING
COORDINATES

R. Jackiw

Centre for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, USA

Noncommuting spatial coordinates and ˇelds can be realized in actual physical situations. Plane
wave solutions to noncommuting photodynamics exhibit violaton of Lorentz invariance (special rela-
tivity).

INTRODUCTION

These days, investigators are probing the validity of Lorentz invariance (spe-
cial relativity). This activity is documented by the papers presented at the Indiana
meeting and submitted to the (recently postponed) Harvard meeting. Experi-
mental and theoretical studies are pursued: experimentalists measure limits on
Lorentz-violating processes; theorists build plausible Lorentz-violating extensions
of the standard model.

When selecting Lorentz-violating terms, for possible inclusion in a modiˇed
standard model, we prefer to use structures that have a preexisting role in physics
or mathematics. Thus our old proposal to add to the Maxwell Lagrangian the
Lorentz-noninvariant quantity (m/2)

∫
d3rA · B = (m/2)

∫
d3rA · (∇ × A),

which leads to birefringence of the vacuum and to a Faraday-like rotation for the
polarization of light propagating through the vacuum, makes use of the

∫
d3rA·B

quantity, which was previously known in magnetohydrodynamics as the ®mag-
netic helicity¯, in Iuid mechanics (with the Iuid velocity v replacing the electro-
magnetic vector potential A) as the ®kinetic vorticity¯, and in mathematics as the
®ChernÄSimons term¯. While the inclusion of this term in an electrodynamical
theory leads to Lorentz, parity, and CTP violation, experiment conclusively rules
out such a modiˇcation in Nature [1].

Another mechanism for Lorentz-invariance breaking has become the focus of
recent research: the suggestion is made that spatial coordinates need not commute.
While present attention to this idea derives from string theory, we shall place this
mechanism in the more familiar context of quantum mechanics and quantum
ˇeld-theory.

Like many interesting quantal ideas, the notion that spatial coordinates may
not commute can be traced to Heisenberg who, in a letter to Peierls, suggested
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that a coordinate uncertainty principle may ameliorate the problem of inˇnite self-
energies. We shall describe later the physical application that Peierls made with
Heisenberg's idea. Evidently, Peierls also described it to Pauli, who told it to
Oppenheimer, who told it to Snyder, who wrote the ˇrst paper on the subject [2].

Let us begin with a physical application of the idea that goes back to Peierls.

1. NONCOMMUTATIVITY IN THE PRESENCE OF STRONG
MAGNETIC FIELDS

1.1. Particle Noncommutativity in the Lowest Landau Level. We are
interested in a point-particle moving on a plane, with an external magnetic ˇeld
b perpendicular to the plane. The equation for the 2-vector r = (x, y) is

mv̇i =
e

c
εijvjb + f i(r), (1)

where v is the velocity r; and f represents other forces, which we take to be
derived from a potential V : f = −∇V . Absent additional forces, the quantized
theory gives rise to the well-known Landau levels, with separations O(b/m). The
limit of large b effectively projects onto the lowest Landau level and is equivalent
to small m. Setting the mass to zero in (1) leaves a ˇrst order equation

ṙi =
c

eb
εijf j(r). (2)

This may be obtained by taking Poisson brackets of r with the Hamiltonian

H0 = V (3)

provided the fundamental brackets describe noncommuting coordinates,

{ri, rj} =
c

eb
εij (4)

so that

ṙi = {H0, r
i} = {rj , ri}∂jV =

c

eb
εijf i(r). (5)

The noncommutative algebra (4) and the associated dynamics can be derived in
the following manner. The Lagrangian for the equation of motion (1) is

L =
1
2
mv2 +

e

c
v · A− V, (6)

where we choose the gauge A = (0, bx). Setting m to zero leaves

L0 =
eb

c
xẏ − V (x, y), (7)



20 JACKIW R.

which is of the form pq̇−h(p; q), and one sees that ((eb/c)x, y) form a canonical
pair. This implies (4), and identiˇes V as the Hamiltonian.

Finally, we give a canonical derivation of noncommutativity in the m → 0
limit, starting with the Hamiltonian

H =
π2

2m
+ V. (8)

H gives (1) upon bracketing with r and π, provided the following brackets hold:

{ri, rj} = 0, (9)

{ri, πj} = δij , (10)

{πi, πj} = −eb

c
εij . (11)

Here π is the kinematical (noncanonical) momentum, mṙ, related to the canonical
momentum p by π = p − (e/c)A.

We wish to set m to zero in (8). This can only be done provided π vanishes,
and we impose π = 0 as a constraint. But according to (11), the bracket of the
constraints is nonzero, and the constraints are recognized to be ®second-class¯ in
Dirac's terminology. To proceed with the canonical formalism, we must introduce
the Dirac brackets. We omit the details of that technology, but merely record the
resulting Dirac bracket:

{ri, rj}D =
c

eb
εij . (12)

In this approach, noncommuting coordinates arise as the Dirac brackets in a
system constrained to lie in the lowest Landau level. Notice that the coordinate
noncommutativity is already established at the classical level in that the Poisson
bracket of coordinates is nonvanishing. Later we shall discuss the quantum
version [3].

Peierls observed that when an impurity in the electron system is described
by V , one can obtain the ˇrst-order energy shift of the lowest Landau level by
taking the coordinates of (x, y) on which V depends to be noncommuting [4].

A further interesting subject, which is not discussed here, concerns the be-
havior of the wave function in the phase-space reductive, m → 0, limit that
projects onto the lowest Landau level. Before the reduction, the wave function is
a normalized expression depending on the two coordinates. After the reduction,
the wave function can depend only on one coordinate, because the other is a
conjugate variable. How all this comes about is explained in the literature [3].
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1.2. Field Noncommutativity in the Lowest Landau Level. The above
demonstrates that spatial coordinates of particles in an intense magnetic ˇeld do
not (Poisson) commute. But we are interested in ˇelds. To ˇnd an example of
noncommuting ˇelds, we turn to the equations of a charged Iuid, moving on a
plane in an external magnetic ˇeld perpendicular to plane. The Iuid is described
by a density ρ and velocity v, both deˇned on the two-dimensional plane. A mass
parameter m is introduced for dimensional reasons, so that the mass density is
mρ. The ˇelds ρ and v are functions of t and r and give an Eulerian description
of the Iuid. The equations that are satisˇed are the continuity equation

ρ̇ + ∇(ρv) = 0 (13)

which expresses matter conservation, and the Euler equation

mv̇i + mv · ∇vi =
e

c
εijvjb + f i, (14)

which is the force equation. Here f i describes additional forces, e. g., −(1/ρ)∇P ,
where P is pressure. We shall take the force to be derived from a potential of
the form

f(r) = −∇ δ

δρ(r)

∫
drV. (15)

(For isentropic systems, the pressure is only a function of ρ; (15) holds with V
a function of ρ, related to the pressure by P (ρ) = ρV ′(ρ) − V (ρ). Here we
allow more general dependence of V on ρ (e. g., nonlocality or dependence on
derivatives of ρ) and also translation noninvariant, explicit dependence on r [5].)

Equations (13)Ä(15) follow by bracketing ρ and π with the Hamiltonian

H =
∫

d2r

(
ρ
π2

2m
+ V

)
(16)

provided that fundamental brackets are taken as

{ρ(r), ρ(r′)} = 0, (17)

{π(r), ρ(r′)} = ∇δ(r − r′), (18)

{πi(r), πj(r′)} = −εij 1
ρ(r)

(
mω(r) +

eb

c

)
δ(r − r′), (19)

where εijω(r) is the vorticity ∂iv
j − ∂jv

i, and π = mv.
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We now consider a strong magnetic ˇeld and take the limit m → 0, which
is equivalent to large b. Equations (14) and (15) reduce to

vi = − c

eb
εij ∂

∂rj

δ

δρ(r)

∫
d2rV. (20)

Combining this with the continuity equation (13) gives the equation for the density
®in the lowest Landau level¯:

ρ̇(r) =
c

eb

∂

∂ri
ρ(r)εij ∂

∂rj

δ

δρ(r)

∫
d2rV. (21)

(For the right-hand side not to vanish, V must not be solely a function of ρ.)
The equation of motion (21) can be obtained by bracketing with the Hamil-

tonian

H0 =
∫

d2rV (22)

provided the charge density bracket is nonvanishing, showing noncommutativity
of the ρ's [6]:

{ρ(r), ρ(r′)} = − c

eb
εij∂iρ(r)∂jδ(r − r′). (23)

H0 and this bracket may be obtained from (16)Ä(19) with the same Dirac
procedure presented for the particle case: We wish to set m to zero in (16); this
is possible only if π is constrained to vanish. But the bracket of the π's (19) is
nonvanishing, even at m = 0, because b �= 0. Thus at m = 0 we are dealing with
a second-class constraint which leads to a nonvanishing Dirac bracket of densities
as in (23):

{ρ(r), ρ(r′)}D = − c

eb
εij∂iρ(r)∂jδ(r − r′). (24)

The ρ bracket (23), (24) enjoys a more appealing expression in momentum
space. Upon deˇning

ρ̃(p) =
∫

d2reiprρ(r) (25)

we ˇnd

{ρ̃(p), ρ̃(q)} = − c

eb
εijpiqj ρ̃(p + q). (26)

The form of the charge density bracket (23), (24), (26) can be understood by
reference to the particle substructure for the Iuid. Take

ρ(r) =
∑

n

δ(r − rn), (27)
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where n labels the individual particles. When the coordinates of each particle
satisfy the nonvanishing bracket (4), (12), the {ρ(r), ρ(r′)} bracket takes the
form (23), (24), (26).

1.3. Quantization. Quantization before the reduction to the lowest Landau
level is straightforward. For the particle case (9)Ä(11) and for the Iuid case
(17)Ä(19) we replace brackets with i/� times commutators. After reduction to
the lowest Landau level we do the same for the particle case thereby arriving at
the ®Peierls substitution¯, which (as mentioned previously) states that the effect
of an impurity [V in (6)] on the lowest Landau energy level can be evaluated
to the lowest order by viewing the (x, y) arguments of V as noncommuting
variables [4].

For the Iuid, quantization presents a choice. On the one hand, we can simply
promote the bracket (23), (24), (26) to a commutator by multiplying by i/�.

[ρ(r), ρ(r′)] = i�
c

eb
εij∂iρ(r′)∂jδ(r − r′), (28)

[ρ̃(p), ρ̃(q)] = i�
c

eb
εijpiqj ρ̃(p + q). (29)

Alternatively we can adopt the expression (27), for the operator ρ(r), where
rn now satisfy the noncommutative algebra

[ri
n, r

j
n′ ] = −i�

c

eb
εijδnn′ (30)

and calculate the ρ commutator as a derived quantity.
However, once rn is a noncommuting operator, functions of rn, even δ

functions, have to be ordered. We choose the Weyl ordering, which is equivalent
to deˇning the Fourier transform as

ρ̃(p) =
∑

n

eiprn . (31)

With the help of (30) and the BakerÄHausdorff lemma, we arrive at the ®trigono-
metric algebra¯

[ρ̃(p), ρ̃(q)] = 2i sin
(

�c

2eb
εijpiqj

)
ρ̃(p + q). (32)

This reduces to (29) for small �.
This form for the commutator, (32), is connected to a Moyal star product in

the following fashion. For an arbitrary c-number function f(r) deˇne

〈f〉 =
∫

d2rρ(r)f(r) =
1

(2π)2

∫
d2pρ̃(p)f̃(−p). (33)
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Multiplying (32) by f̃(−p)g̃(−q) and integrating gives

[〈f〉, 〈g〉] = 〈h〉 (34)

with

h(r) = (f  g)(r) − (g  f)(r), (35)

where the ® ¯ product is deˇned as

(f  g)(r) = exp
(
i

2
�c

eb
εij∂i∂

′
j

)
f(r)g(r′)|r′=r. (36)

Note however that only the commutator is mapped into the star commutator. The
product 〈f〉〈g〉 is not equal to 〈f  g〉.

The lack of consilience between (29) and (32) is an instance of the Groen-
waldÄVan Hove theorem which establishes the impossibility of taking over into
quantum mechanics all classical brackets [7]. Equations (30)Ä(36) explicitly
exhibit the physical occurrence of the star product for ˇelds in a strong magnetic
background.

2. VARIOUS ALGEBRAS

Before proceeding with our construction of a noncommutative Maxwell ˇeld
theory, let us summarize here the various (nontrivial) algebras that we have
encountered in the above development.

The Iuid velocity algebra (19) at b = 0 and m = 1 reads in any spatial
dimension

{vi(r), vj(r′)} = − 1
ρ(r)

(∂iv
j(r) − ∂jv

i(r))δ(r − r′). (37)

This was ˇrst given by Landau [8]. In spite of the awkward appearance, the
algebra in fact takes a familiar form when we deˇne the momentum density
P = ρv, and use (17), (18) for the ρ brackets. Then (37), with (17) and (18)
implies

{P i(r), Pj(r′)} =
(
Pj(r)

∂

∂ri
+ P i(r′)

∂

∂rj

)
δ(r − r′). (38)

This is the usual momentum density algebra, which also describes diffeomor-
phisms of space in the following fashion. If an inˇnitesimal coordinate transfor-
mation is given by

δri = −f i(r), (39)
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we deˇne the average 〈f〉 of f i by integrating with P i

〈f〉 ≡
∫

drf i(r)P i(r), (40)

then (38) has the consequence that for two such functions f and g we have

{〈f〉, 〈g〉} = −〈h〉, (41)

where h is the Lie bracket of f and g:

hi = gj∂jf
i − f j∂jg

i. (42)

By scaling ρ the noncommutative density algebra (23), (24) may be pre-
sented as

{ρ(r), ρ(r′)} = εij∂iρ(r)∂jδ(r − r′). (43)

This intrinsically two-dimensional structure is the area-preserving algebra, studied
by Arnold [9]. Area-preserving coordinate transformations (volume preserving in
arbitrary dimensionality) possess unit Jacobian. For the inˇnitesimal form of the
transformation (39) this means that f i is transverse: ∂if

i = 0. Therefore, in two
dimensions, an area-preserving transformation is generated by a scalar:

f i = εij∂jf. (44)

When an average 〈f〉 is deˇned by

〈f〉 =
∫

d2rf(r)ρ(r), (45)

equation (43) again implies (41), but now we have

h = εij∂if∂jg, (46)

which also follows from (42) when all three functions take the form (44).
Finally the algebra (32)

{ρ̃(p), ρ̃(q)} = −2
�

sin
(

�c

2eb
εijpiqj

)
ρ̃(p + q),

which also leads to the Moyal-star product (36) for averages (45), is called
a trigonometric algebra, which was introduced by D. Fairlie, P. Fletcher, and
C. Zachos [10].
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3. NONCOMMUTATIVE ELECTRODYNAMICS

Stimulated by the occurrence of the star product in the discussion of charged
Iuids in an intense magnetic ˇeld, we abstract the idea and use it in the new
setting of noncommutative Maxwell theory. This theory is described by the vector
potential Âµ (the caret denotes noncommuting quantities) and the theory is built

on a gauge-invariance principle. Gauge transformations act on Âµ according to

Âµ → Âλ
µ = (eiλ)−1  (Âµ − i∂µ)  (eiλ). (47)

The star ( ) product of two quantities is deˇned by

(O1  O2)(r) = exp
(
i

2
θµν ∂

∂rµ

∂

∂r′ν

)
O1(r)O2(r′)|r=r′ , (48)

and we take θµν to have no time components (θ0i = 0, θij = εijkθk). The
ˇeld strength F̂µν is constructed from Âµ in a manner such that the gauge
transformation (47) effects a covariant transformation:

F̂µν → F̂λ
µν = (eiλ)−1  Fµν  (eiλ). (49)

This requirement is met, provided F̂µν is given by

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]	, (50)

where [Âµ, Âν ]	 = Âµ  Âν − Âν  Âµ. Finally, the action is taken to be

Î = −1
4

∫
d4xF̂µν  F̂µν = −1

4

∫
d4xF̂µν F̂µν . (51)

One would like to ˇnd the equations of motion, calculate physically inter-
esting quantities, and compare them to corresponding quantities in the Maxwell
theory. In this way one could assess the effect of noncommutativity and per-
haps place experimental limits on it. However, a problem arises: local quantities
in noncommutative electrodynamics are gauge variant and no invariant meaning
can be assigned to their proˇles. Nonlocal, integrated, expressions can be gauge
invariant (for example, the action (51) is gauge invariant), but in the ordinary
Maxwell theory we deal with local quantities (like proˇles of electromagnetic
waves) and we would like to compare these classical local disturbances to corre-
sponding quantities in the noncommutative theory.

A way out of this difˇculty is provided by Seiberg and Witten's observation
that the noncommuting gauge theory may be equivalently described by a com-
muting gauge theory that is formulated in terms of ordinary (not star) products
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of a commuting vector potential Aµ, together with an explicit dependence on
θαβ , which acts as a constant ®background¯. This equivalence is established by
expressing the noncommuting vector potential Âµ as a function of Aµ and θαβ

that solves the SeibergÄWitten equation [11]

∂Âµ

∂θαβ
= −1

8
{Âα, ∂βÂµ + F̂βµ}	 − (α ↔ β), (52)

where the bracketed expression denotes the ®star¯ anticommutator. Solutions of
this equation are expressed in terms of θαβ and the ®initial condition¯ Âµ|θαβ=0;
the latter quantity being just the commuting Aµ.

We work to the lowest order in θ and ˇnd

Âµ = Aµ − 1
2
θαβAα(∂βAµ + Fβµ). (53)

The noncommuting action, expressed in terms of the commuting quantities Aµ,
Fµν = ∂µAν − ∂νAµ, and θαβ , now reads [12]

Î = −1
4

∫
d4x

((
1 − 1

2
θαβFαβ

)
FµνFµν + 2θαβFµαFνβF

µν

)
. (54)

This is gauge invariant in the conventional sense, and from the equations of motion
that are implied by Î we can determine the gauge-invariant electric (Ei = F i0)
and magnetic ˇelds (Bi = −εijkFjk).

These ˇelds satisfy the equations, which maintain a Maxwell form.

1
c

∂

∂t
B − ∇ × E = 0, (55a)

∇ · B = 0, (55b)

1
c

∂

∂t
D − ∇ × H = 0, (56a)

∇ ·D = 0. (56b)

The ˇrst set (55) reIects the gauge invariance of the system, namely, that E and
B are given in terms of potentials. The second set (56) is a consequence of the
nonlinear dynamics implied by (54). The constitutive relations relating D and H
to E and B follow from (54):

D = (1 − θ ·B)E + (θ ·E)B + (E · B)θ,

H = (1 − θ · B)B− (θ ·E)E +
1
2
(E2 − B2)θ.

(57)
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Note that parity is preserved Å coordinate reIection leaves the constant vector θ
unchanged, hence θ ·B transforms as a scalar ˇeld; and θ ·E, as a pseudoscalar
ˇeld. Similarly, (E · B)θ behaves as a vector ˇeld; while (E2 − B2)θ, as a
pseudovector.

We seek plane-wave solutions to (55)Ä(57) Å functions of ωt − k · r Å
keeping terms to the lowest order in θ. Such solutions indeed exist provided the
dispersion relation, relating k and ω, takes the following form. In the absence
of an external magnetic ˇeld the dispersion relation is conventional, ω = ck.
However, plane wave solutions to our system of equations exist even in the
presence of a constant background magnetic induction b. Then the dispersion
relation is modiˇed to

ω = ck(1 − θT · bT ), (58)

where θT and bT are components transverse to k, the direction of propagation
k · θT = k · bT = 0 [6].

The result (58) puts into evidence an explicit violation of Lorentz invariance.
Conservation of parity, which we remarked on previously, ensures that both
polarizations travel at the same velocity, which generically differs from c by the
factor (1−θT ·bT ), and there is no Faraday rotation. Let us also observe that the
effective Lagrange density in (54) possesses two interaction terms proportional
to θ, with deˇnite numerical constants. Owing to the freedom of rescaling θ,
only their ratio is signiˇcant. It is straightforward to verify that if the ratio
is different from what is written in (54), the two linear polarizations travel at
different velocities. Thus the noncommutative theory is unique in affecting the
two polarizations equally, at least to O(θ).

The change in velocity for motion relative to an external magnetic induction
b allows searching for the effect with a MichelsonÄMorley experiment. In a
conventional apparatus with two legs of length l1 and l2 at right angles to each
other, a light beam of wavelength λ is split in two, and one ray travels along b
(where there is no effect), while the other, perpendicular to b, feels the change
of velocity and interferes with the ˇrst. After rotating the apparatus by 90◦,
the interference pattern will shift by 2(l1 + l2)θT · bT /λ fringes. Taking light
in the visible range, λ ∼ 10−5 cm, a ˇeld strength b ∼ 1 T, and using the
current bound on θ ≤ (10 TeV)−2 obtained in [13]∗, one ˇnds that a length
l1 + l2 ≥ 1018 cm ∼ 1 pc would be required for a shift of one fringe. Galactic
magnetic ˇelds are neither that strong nor coherent over such large distances, so
another experimental setting needs to be found to test for noncommutativity.

∗Bounds on θ from experimental limits on modiˇcations to a fermion sector are θ =
O (10 TeV)−2.
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Finally, what about Heisenberg's intuition that noncommuting coordinates
will ammeliorate divergences in relativistic ˇeld theory? It turns out that that
is indeed true as far as ultraviolet divergences are concerned. However, novel
infrared divergences appear, so the problem of divergences remains, albeit in
another form. Indeed, these infrared effects associated with noncommutative
coordinates provide another obstacle to physical applications of this idea.
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