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The review of the light-front formulation of the quasi-potential approach in quantum ˇeld theory
for bound state and scattering problems is given.
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1. INTRODUCTION

The most general information about two- and many-body systems in quantum
ˇeld theory is contained in the corresponding many-time Green functions, which
are related to each other by function equations. In some conditions from these
equations one can obtain equations for two-body bound state and scattering prob-
lems (BetheÄSalpeter-type equations [1]). The dependence of the BetheÄSalpeter
amplitude (wave function) on the relative time of two particles leads to the fact
that it contains the information on bound state and on the states, which have
nothing to do with bound states as well. ®Electron today and proton tomorrow¯
do not form the bound state Å hydrogen atom. Similar difˇculties arise in the
case of many-body systems.

A regular method for excluding the relative time, based on the two-time Green
functions has been developed in Ref. 2, where relativistic three-dimensional equa-
tions for bound state and scattering problems were derived. These equations are
known as quasi-potential equations, because of their similarity with the corre-
sponding equations of quantum mechanics. For quasi-potential wave functions
the boundary conditions corresponding to bound state and scattering problems
can be imposed. Relativistically covariant form of these equations for two- and
many-body systems is given in Ref. 3. Similar equation for two particles in the
Hamiltonian formulation of quantum ˇeld theory has been derived in Ref. 4.
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With the development of quark models and the study of structure of particles
and nuclei at high momentum transfer it turned out to be convenient the light-front
form of quasi-potential equations [5].

In this approach the relativistic composite system with the total 4-momentum

P is described by means of the quasi-potential wave function ΦP ([x(i),p
(i)
⊥ ]),

where the ®longitudinal motion¯ of constituents is parametrized by means of the
scale-invariant variables

x(i) =
p

(i)
0 + p

(i)
3

P0 + P3
,

where p
(i)
µ (µ =0,1,2,3 is the Lorentz index) and Pµ are the individual 4-mo-

mentum of the i-th constituent and the total 4-momentum of the system, respec-
tively. Variables x(i) are ratios of the light-front variables. In terms of these
variables the wave function of the composite system re
ects, in particular, the
dependence of the internal motion of constituents on the total momentum of the
system. Square brackets in the argument of the wave function Φp denote the set

of the variables x(i) and p
(i)
⊥ which satisfy the conditions

N∑
i=1

x(i) = 1; 0 < x(i) < 1;

N∑
i=1

p
(i)
⊥ = P⊥.

The review is organized as follows:
Section 2 is devoted to the formulation of the light-front formalism for

composite systems. Equations for bound states and scattering problems are given.
It is shown how equations of this approach are related to or differ from the
equation obtained in the framework of the old-fashioned perturbation theory in
the inˇnite momentum frame. Spectral and projective properties of the ®two-time¯
Green functions are studied.

Section 3 deals with the method of constructing of relativistic elastic form
factors and scattering amplitudes of composite systems in the light-front formal-
ism. A general expression for the matrix element of the current of composite
system in terms of relativistic wave functions and the generalized vertex operator
Γ̃µ is given. The electromagnetic form factor for a system, consisting of two or
arbitrary number of constituents is presented in the impulse approximation.

Problems of the interaction of relativistic composite systems are also dis-
cussed in this section. The scattering amplitude is expressed in a general form,
using relativistic wave functions and the transition operator. The constituent
interchange mechanism is considered.

Section 4 is devoted to the study of deep inelastic form factors of composite
systems. Like the case of elastic form factors, a general expression for the deep
inelastic tensorWµν , in terms of the relativistic wave functions are the generalized
two-photon vertex Γ̃µν is given. The explicit form of the structure functions W1
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and νW2 in the lowest order in the electromagnetic interaction is presented. It is
shown that if the transverse motion of quarks is taken into account, the Bjorken
scaling is violated and the structure functions become the square of the momentum
transfer dependent.

In Section 5 inclusive hadron-hadron processes are considered. General
representations for the inclusive cross sections in terms of the light-front wave
functions are given. Approximations are treated which lead to the quark-parton
description of these processes.

Note, that the review is based mainly on the results obtained in the Dubna
school. Other forms of light-front dynamics and appropriate lists of references
can be found in a number of original and review papers (see, e.g., [6Ä15]).

2. LIGHT-FRONT FORMULATION OF BOUND STATE AND
SCATTERING PROBLEMS

Light-front variables have been introduced by Dirac [16] with the aim to con-
struct the quantum theory with commutation relations on the light-front hyperplane
(instead of traditionally used t = 0 hyperplane). In this section, following Ref.
2 equations for bound state and scattering problems in light-front variables are
derived.

2.1. Equation for the Two-Body Bound State Wave Function. Consider the
BetheÄSalpeter amplitude (wave function)

χP,α = 〈0|T (φ1(x1)φ2(x2))|P, α〉 = e−iPXχP,α(x). (2.1)

Here |P, α〉 is the state vector with total 4-momentum P and quantum num-
bers α, X = (x1 + x2)/2 is the centre of mass coordinate, P = p1 + p2. Deˇne
the relative coordinate and momentum

x = x1 − x2, p =
p1 − p2

2
, (2.2)

and introduce the light-front variables

x± =
x0 ± x3

2
, p± = p0 ± p3, P± = P0 ± P3. (2.3)

Introduce then the Fourier transform χP,α(p) = χP,α(p−, p+,p⊥) of the
BetheÄSalpeter amplitude

χP,α(p) = χP,α(p−, p+,p⊥) =

∫
d4pe−ipxχP,α(p) =

=
1

2

∫
dp+dp−dp⊥e−i(p+x−+p−x+−p⊥x⊥)χP,α(p) (2.4)
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and deˇne the light-front quasi-potential wave function [2,5]:

ΨP,α(p+,p1) =

∞∫
−∞

dp−χP,α(p−, p+,p⊥). (2.5)

It can be shown that the function ΦP,α(p+,p⊥) depends on the values of
the BetheÄSalpeter amplitude on the light-front hyperplane x0 + x3 = 0. In fact,
using the deˇnition (2.5) and the Fourier transformation (2.4) we get:

ΨP,α(p+,p⊥) =

=
2

(2π)3

∫
dx+dx−dx⊥δ(x+)e−i(p+x−+p−x+−p⊥x⊥)χP,α(x+, x−,x⊥). (2.6)

Consider now the two-particle Green function

G(x1, x2;x′1, x
′
2) = G(X −X ′;x, x′) =

〈0|T (φ1(x1)φ2(x2)φ+
1 (x′1)φ+

2 (x′2))|0〉 = (2.7)

1

(2π)3

∫
dPdpdp′e−iP (X−X′)−i(px−p′x′)G(P ; p, p′).

Here the total and relative 4-momenta and 4-coordinates in the initial and
ˇnal states are introduced

P = p1 + p2, , p =
p1 − p2

2
, X =

x1 + x2

2
, x = x1 − x2. (2.8)

P = p′1 + p′2, p
′ =

p′1 − p′2
2

, X ′ =
x′1 + x′2

2
, x′ = x′1 − x′2. (2.9)

Deˇne the Fourier transform of the ®two-time¯ quasi-potential Green func-
tion

G̃(P ; p+,p⊥; p′+,p
′
⊥) =

∞∫
−∞

dp−dp
′
−G(P ; p, p′). (2.10)

For free particles we have

G(0)(P ; p, p′) =
−δ(4)(p− p′)[(

P
2 + p

)2 −m2
1 + iε

] [(
P
2 − p

)2 −m2
2 + iε

] . (2.11)
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Performing the integration according to the deˇnition (2.10), we obtain

G̃(0)(P ; p+,p⊥; p′+,p
′
⊥) =

4πiδ(p+ − p′+)δ(2)(p⊥ − p′⊥)θ(x)θ(1 − x)

P+x(1 − x)
[
P 2 + P2

⊥ −
(P/2+p)2

⊥+m2
1

x
− (P/2+p)2

⊥−m2
2

1−x

] = (2.12)

G̃(0)(P ; p+,p⊥)δ(p+ − p′+)δ(2)(p⊥ − p′⊥).

In this expression the variable x is introduced in the following way

x =
1

2
+
p+

P+
. (2.13)

It is obvious that when the variable x varies in the limits

0 < x < 1, (2.14)

the variable p+ varies in the interval (−P+/2, P+/2).
Deˇne now the inverse operator by the relation

P+/2∫
−P+/2

dp′′+

∫
dp′′⊥G̃

−1(P ; p+,p⊥; p′′+,p
′′
⊥)× (2.15)

×G̃(P ; p′′+,p
′′
⊥; p′+,p

′
⊥) = δ(p+ − p′+)δ(2)(p⊥ − p′⊥).

Introduce the interaction kernel V (quasi-potential) [2]:

G̃−1(P ; p+,p⊥; p′+,p
′
⊥) = G̃(0)−1(P ; p+,p⊥)×

×δ(p+ − p′+)δ(2)(p⊥ − p′⊥)− 1

4πi
V (P ; p+,p⊥; p′+,p

′
⊥). (2.16)

After simple transformations the equation for the quasi-potential wave
function

ΦP,α(x,p⊥) = P+x(1 − x)ΨP,α(p+,p⊥) (2.17)

takes the form [5]:[
P 2 − (p⊥ + (1/2− x)P⊥)2 +m2

1

x
− (p⊥ + (1/2− x)P⊥)2 +m2

2

1− x

]
×
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×ΦP,α(x,p⊥) =

1∫
0

dx′

x′(1− x′)

∫
dp′⊥V (P ; p+,p⊥; p′+,p

′
⊥)ΦP,α(x′,p′⊥).

(2.18)

The equation obtained gives the wave function of a bound state in an arbitrary
Lorentz reference frame. Comparing it with the equation in the frame where
P⊥ = 0 we get the transformation property for the wave function from the
arbitrary frame to the frame, in which the total transverse momentum of
two-particle bound state is equal to zero:

ΦP (x,p⊥) = ΦP⊥=0(x,p⊥ + (1/2− x)P⊥). (2.19)

The case of spin particles is considered in Ref. 17.
2.2. Equation for the Scattering Amplitude and Relation to the Equation

in the Inˇnite Momentum Frame. Derive now the equation for the two-body
scattering amplitude. Deˇnition of the scattering amplitude T (P ; p, p′) in the
4-dimensional covariant BetheÄSalpeter formalism looks as follows:

G(P ; p, p′) = G(0)(P ; p, p′)+

+

∫
d4p′′d4p′′′G(0)(P ; p, p′′)T (P ; p′′, p′′′)G(0)(P ; p′′′, p′) = (2.20)

G(0)(P ; p)δ(4)(p− p′) +G(0)(P ; p)T (P ; p, p′)G(0)(P ; p′).

Deˇne the quantity T̃ (P ; p+,p⊥; p′+,p
′
⊥) by the similar expression [2]:

G̃(P ; p+,p⊥; p′+,p
′
⊥) = G̃(0)(P ; p+,p⊥)δ(p+ − p′+)δ(2)(p⊥ − p′⊥)+

G̃(0)(P ; p+,p⊥)T̃ (P ; p+,p⊥; p′+,p
′
⊥)G̃(0)(P ; p′+,p

′
⊥). (2.21)

Integrating (2.20) according to (2.10) we get:

G̃ = G̃(0) + ˜G(0)TG(0). (2.22)

Comapring formulae (2.22) and (2.21) we obtain:

T̃ = G̃(0)−1 · ˜G(0)TG(0) · G̃(0)−1. (2.23)

It can be shown that on the mass shell the following equality holds

T̃ = T. (2.24)
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Derive now the equation for the amplitude T̃ . Using the deˇnition (2.16) we
get the equation for the Fourier transform of the ®two-time¯ Green function

G̃ = G̃(0) + G̃(0)V G̃. (2.25)

In (2.25) the multiplication is understood as a three-dimensional intergation over
the corresponding variables x and p⊥. Comparing (2.25) and (2.21) one can see
that

T̃ G̃(0) = V G̃ (2.26)

from which the equation for scattering amplitude T̃ follows:

T̃ = V + V G̃(0)T̃ . (2.27)

In the frame, where total transverse momentum is zero P⊥ = 0, the explicit
form of the equation (2.27) looks as follows:

T̃ (P ;x,p⊥;x′,p′⊥) = V (P ;x,p⊥;x′,p′⊥)+

1∫
0

dx′′

x′′(1 − x′′)

∫
dp′′⊥

V (P ;x,p⊥;x′′,p′′⊥)T̃ (P ;x′′,p′′⊥x
′,p′⊥)[

m2
1+p′′⊥

2

x′′ +
m2

2+p′′⊥
2

1−x′′ − P 2 − iε
] . (2.28)

In a number of papers (see, e.g., [18Ä21]) composite systems have been
described on the basis of the so-called old-fashioned perturbation theory in the
inˇnite momentum frame, which has been used by Weinberg [22] in the rela-
tivistic quantum ˇeld theory. Equation (2.28) reproduces in the lowest order of
perturbation theory the equation from [22] and at the same time contains the
regular method of constructing the interaction kernel in the higher orders of per-
turbation theory. We will not discuss this point here, but recall that as in the
canonical three-dimensional approach [2] there exist two methods of constructing
of the interaction kernel (by means of the ®two-time¯ Green function and by
means of the scattering amplitude on the mass-shell).

The method of the constructing of the interaction kernel in lowest and high
orders in perturbation theory can be used, for instance, for the relativistic general-
ization of one- or multi-boson exchange potentials to describe the nuclear forces.
For the review of quark aspects of nuclear forces see, e.g., [23].

We note, however, that three exists one substantional difference between
the equation derived here and equation of Ref. 22. In the light-front approach
the equation is written in an arbitrary Lorentz frame and ®longitudinal motion¯
of constituents is parametrized in terms of scale invariant and Lorentz invari-
ant (under the transformations of reference frames along the z-axis) variable
x = (P/2 + p)+/P+. In the inˇnite momentum frame ®longitudinal motion¯ is
parametrized in terms of the variable x = (P/2 + p)3/P3, which is not Lorentz
invariant.
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2.3. Equation for the Many-Body Bound State Wave Function. Formalism
developed can be extended to the case of N relativistic interacting particles.
The way of this extention can be seen if instead of the variable x, deˇned by
the relative momentum, two variables x(1) and x(2), deˇned by the individual
momenta of particles

x(i) =
p

(i)
+

P+
, i = 1, 2 (2.29)

are used. The variables x(i) vary in the interval 0 < x(i) < 1.
Deˇne the Fourier transform of the many-body BetheÄSalpeter amplitude

(wave function)

χP,α([x(i)
µ ]) = 〈0|T (φ1(x(1)

µ )φ2(x(2)
µ )...φN (x(N)

µ )|P, α〉

by the following relation

δ(4)

(
P −

N∑
i=1

p(i)

)
χP,α([p(i)]) =

∫ N∏
i=1

d4x(i) exp

[
i

N∑
i=1

p(i)x(i)

]
χP,α([x(i)

µ ]),

(2.30)

where
[p(i)] = p(1), ..., p(N); [x(i)

µ ] = x
(1)
1 , ..., x(N).

Here we have ascribed the Lorentz index µ to the 4-coordinates x
(i)
µ in

order to distinguish them from the scale-invariant variables x(i), which will be
introduced later.

Introduce the light, front variables

P± = P0 ± P3; , p
(i)
± = p

(i)
0 ± p

(i)
3 ; , x

(i)
± =

x
(i)
0 ± x

(i)
3

2
(2.31)

and integrate (2.30) over
N∏
i=1

dp
(i)
− . We obtain

2δ

(
P+ −

N∑
i=1

p
(i)
+

)
δ(2)

(
P⊥ −

N∑
i=1

p
(i)
⊥

)
ΨP,α([p

(i)
+ ,p

(i)
⊥ ]) =

= (2π)N
∫ N∏

i=1

d4x(i)δ(x
(i)
+ ) exp

[
i

N∑
i=1

(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )

]
χP,α([x(i)

µ ]).

(2.32)
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The function ΨP,α([p
(i)
+ ,p

(i)
⊥ ]) is related to the BetheÄSalpeter amplitude in the

following way:

ΨP,α([p
(i)
+ ,p

(i)
⊥ ]) =

∞∫
−∞

N∏
i=1

dp
(i)
− δ

(
P− −

N∑
i=1

p
(i)
−

)
χP,α([p(i)]). (2.33)

Introduce now the Fourier transform of the ®two-time¯ Green function

G̃(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

=

∞∫
−∞

N∏
i=1

dp
(i)
− dp

(i)′

− δ

(
P− −

N∑
i=1

p
(i)
−

)
δ

(
P− −

N∑
i=1

p
(i)′

−

)
G(P ; [p(i)]; [p(i)′ ]).

(2.34)

The function G(P ; [p(i)]; [p(i)′ ]) is deˇned by the Fourier transformation

G([x(i)
µ ]; [x(i)′

µ ]) = 〈0|T (φ1(x(i)
µ )...φN (x(N)

µ )φ+
1 (x(1)′

µ )...φ+
N (x(N)′

µ ))|0〉 =

(2π)−4N

∫ N∏
i=1

d4p(i)d4p(i)′ exp

[
−i

N∑
i=1

(p(i)x(i) − p(i)′x(i)′ )

]
× (2.35)

×G(P ; [p(i)]; [p(i)′ ]).

For the case of free particles we have

G(0)(P ; [p(i)]; [p(i)′ ]) =

iN
N∏
i=1

δ(4)(p(i) − p(i)′)

N∏
i=1

(p(i)2 −m(i)2 + iε)

. (2.36)

Integrating both sides of (2.36) according to the deˇnition (2.34) and omitting
the δ-function corresponding to the total 4-momentum consevation, we get

G̃(0)(P ; [p
(i)
+ , p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

(2i)N (2πi)N−1
N∏
i=1

δ(p
(i)
+ − p

(i)′

+ )δ(2)(p
(i)
⊥ − p

(i)′

⊥ )
N∏
i=1

θ(x(i))θ(1 − x(i))

PN−1
+

N∏
i=1

x(i)

[
P 2 −

N∑
i=1

(p
(i)
⊥ −x(i)P⊥)2+m(i)2

x(i)

] =

(2.37)
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G̃(0)(P ; [p
(i)
+ ,p

(i)
⊥ ])

N∏
i=1

δ(p
(i)
+ − p

(i)′

+ )δ(2)(p
(i)
⊥ ,p

(i)′

⊥ ]).

The variables x(i) are deˇned in the following way:

x(i) =
p

(i)
+

P+
, i = 1, 2, ..., N. (2.38)

Thus, the function G̃(0)(P ; [p
(i)
+ ,p

(i)
⊥ ]) is deˇned under the conditions:

N∑
i=1

x(i) = 1; , 0 < x(i) < 1; ,

N∑
i=1

p
(i)
⊥ = P⊥. (2.39)

Introduce now the inverse operator G̃−1 by means of the relation

P+∫
0

N∏
i=1

dp
(i)′′

+

∫ N∏
i=1

dp
(i)′′

⊥ G̃−1(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′′

+ ,p
(i)′′

⊥ ])×

×G̃(P ; [p
(i)′′

+ ,p
(i)′′

⊥ ]; [p
(i)′

+ ,p
(i)′

⊥ ]) =

N∏
i=1

δ(p
(i)
+ − p

(i)′

+ )δ(2)(p
(i)
⊥ ,p

(i)′

⊥ ]) (2.40)

and deˇne the interaction kernel V :

G̃−1(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) = G̃(0)−1(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])−

−
δ

(
P+ −

N∑
i=1

p
(i)
+

)
δ(2)

(
P⊥ −

N∑
i=1

p
(i)
⊥

)
(2i)N (2πi)N−1

V (P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]). (2.41)

The equation for the wave function

ΦP,α([x(i),p
(i)
⊥ ]) = PN−1

+

N∏
i=1

x(i)ΨP,α([p
(i)
+ ,p

(i)
⊥ ]) (2.42)

looks as follows [24]:[
P 2 −

N∑
i=1

(p
(i)
⊥ − x(i)P⊥)2 +m(i)2

x(i)

]
ΦP,α([x(i),p

(i)
⊥ ]) =
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=

1∫
0

N∏
i=1

dx(i)′

x(i)′
δ

(
1−

N∑
i=1

x(i)′

)∫ N∏
i=1

dp
(i)′

⊥ δ(2)

(
P⊥ −

N∑
i=1

p
(i)′

⊥

)
× (2.43)

×V (P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])ΦP,α([x(i)′ ,p
(i)′

⊥ ]).

The formalism developed can be used for the treatment of a wide class of
elementary particle and nuclear physics problems.

2.4. Spectral and Projective Properties of the Two-Time Green Functions.
The Green function for N interacting particles in the light-front quantum ˇeld
theory is deˇned as a vacuum expectation value of the ®chronologically¯ ordered
Heisenberg ˇeld operators [25]:

G([x(i)
µ ]; [x(i)′

µ ]) = 〈0|T+(ψ1(x(1)
µ )...ψN (x(N)

µ )ψ̄N (x(N)′

µ )...ψ̄1(x(1)′

µ ))|0〉.
(2.44)

Deˇne now the ®two-time¯ Green function:

G̃(X+; [x
(i)
− ,x

(i)
⊥ ];X ′+; [x

(i)′

− ,x
(i)′

⊥ ]) = G([x(i)
µ ]; [x(i)′

µ ])

∣∣∣∣∣∣∣ x
(1)
+

=...=x
(N)
+

=X+

x
(1)′
+

=...=x
(N)′
+

=X′+

.

(2.45)

It is convenient to introduce the operators

A([x(i)
µ ]) = ψ1(x(1)

µ )...ψN (x(N)
µ )

∣∣∣
x

(1)
+ =...=x

(N)
+ =X+

Ā([x(i)′

µ ]) = ψ̄N (x(N)′

µ )...ψ1(x(1)′

µ )

∣∣∣∣x(1)′
+ =...=x

(N)′
+ =X′+

(2.46)

and rewrite the ®two-time¯ Green function as follows:

G̃([x(i)
µ ]; [x(i)′

µ ]) = 〈0|T+(A([x(i)
µ ])Ā([x(i)′

µ ]))|0〉 =

= θ(X+ −X ′+)〈0|A([x(i)
µ ])Ā([x(i)′

µ ])|0〉 ± (2.47)

±θ(X ′+ −X+)〈0|Ā([x(i)′

µ ])A([x(i)
µ ])|0〉.

The signs ± are chosen depending on the number of fermion ˇeld operators in

A([x
(i)
µ ]).
In what follows we will obtain the spectral representation for the Green

function (2.47). Using the expansion in the complete set of physical states |n〉,
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translation invariance property and the Fourier representation for θ function the
expression (2.47) can be rewritten as:

G̃([x(i)
µ ]; [x(i)′

µ ]) = G̃(X+ −X ′+; [x
(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ]) =

=

∞∫
−∞

dP− expip−(X+−X′+)

∞∫
0

dz × (2.48)

×
[
σ1(z; [x

(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ])

P− − z + iε
∓ σ2(z; [x

(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ])

P− + z − iε

]
.

Spectral functions σ1 and σ2 are expressed via the three-dimensional light-front
wave functions:

σ1(z; [x
(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ]) =

=
i

2π

∑
m

δ(z − P (m)
− )Ψom([x

(i)
− ,x

(i)
⊥ ])Ψ̄om([x

(i)′

− ,x
(i)′

⊥ ]), (2.49)

σ2(z; [x
(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ]) =

=
i

2π

∑
m

δ(z − P (m)
− )Ψmo([x

(i)
− ,x

(i)
⊥ ])Ψ̄mo([x

(i)′

− ,x
(i)′

⊥ ]), (2.50)

Ψom([x
(i)
− ,x

(i)
⊥ ]) = 〈0|A([0, x

(i)
− ,x

(i)
⊥ ])|m〉 =

= 〈0|ψ1(0, x
(1)
− ,x

(1)
⊥ )...ψN (0, x

(N)
− ,x

(N)
⊥ )|m〉, (2.51)

Ψ̄om([x
(i)′

− ,x
(i)′

⊥ ]) = 〈m|Ā([0, x
(i)′

− ,x
(i)′

⊥ ])|0〉, (2.52)

Ψmo([x
(i)
− ,x

(i)
⊥ ]) = 〈m|A([0, x

(i)
− ,x

(i)
⊥ ])|0〉, (2.53)

Ψ̄mo([x
(i)′

− ,x
(i)′

⊥ ]) = 〈0|Ā([0, x
(i)′

− ,x
(i)′

⊥ ])|m〉. (2.54)

Summation in Eqs. (2.49), (2.50) is understood as the integration over 4-

momentum P (m)(P
(m)
+ > 0;P

(m)
− > 0) under the condition P (m)2

> 0 and
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the summation over other quantum numbers on which the given physical state
|m〉 can be dependent.

Deˇne the Fourier transforms of the spectral functions:

σ1,2(z; [x
(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ]) =
1

(2π)4N

∫ N∏
i=1

dp
(i)
+ dp

(i)
⊥ dp

(i)′

+ dp
(i)′

⊥ ×

× exp

{
−i

N∑
i=1

[(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )− (p

(i)′

+ x
(i)′

− − p
(i)′

⊥ x
(i)′

⊥ )]

}
× (2.55)

×σ1,2(z; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]).

From this deˇnition and Eqs.(2.51Ä(2.54) for wave functions one obtains:

σ1(z; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

=
i

(2π)1−4N

∑
m

δ(z − P (m)
− )Ψom([p

(i)
+ ,p

(i)
⊥ ])Ψ̄om([p

(i)′

+ ,p
(i)′

⊥ ]), (2.56)

σ2(z; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

=
i

(2π)1−4N

∑
m

δ(z − P (m)
− )Ψmo([p

(i)
+ ,p

(i)
⊥ ])Ψ̄mo([p

(i)′

+ ,p
(i)′

⊥ ]), (2.57)

where
Ψmo([x

(i)
− ,x

(i)
⊥ ]) =

=

∫ N∏
i=1

dp
(i)
+ dp

(i)
⊥ exp

[
−i

N∑
i=1

[(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )

]
Ψmo([p

(i)
+ ,p

(i)
⊥ ]), (2.58)

Ψom([x
(i)
− ,x

(i)
⊥ ]) =

=

∫ N∏
i=1

dp
(i)
+ dp

(i)
⊥ exp

[
−i

N∑
i=1

[(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )

]
Ψom([p

(i)
+ ,p

(i)
⊥ ]). (2.59)

We will show now that the functions σ1,2(z; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) possess
the following properties:

σ1(z; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) = 0 (2.60)
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if even one of the variables p(i)
+ , p

(i)′

+ < 0 and

σ2(z; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) = 0 (2.61)

if even one of the variables p(i)
+ , p

(i)′

+ > 0.
Let us show ˇrst the validity of (2.60). Consider for this purpose the Fourier

transform of the light-front wave function

Ψom([p
(i)
+ ,p

(i)
⊥ ]) =

1

(2π)3N

∫ N∏
i=1

dx
(i)
− dx

(i)
⊥ exp

[
i

N∑
i=1

[(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )

]
×

×〈0|ψ1(0, x
(1)
− ,x

(1)
⊥ )...ψN (0, x

(N)
− ,x

(N)
⊥ )|m〉 =

=
1

(2π)3N−3

∑
m1

δ(p
(1)
+ −p

(m1)
+ )

∫ N∏
i=2

dx
(i)
− dx

(i)
⊥ exp

[
i

N∑
i=2

(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )

]
×

×〈0|ψ1(0)|m1〉〈m1|ψ2(x
(2)
− ,x

(2)
⊥ )...ψN (x

(N)
− ,x

(N)
⊥ )|m〉. (2.62)

Taking into account that p(m1)
+ > 0, it is evident that Ψom([p

(i)
+ ,p

(i)
⊥ ]), if p(1)

+ < 0.

In order to show the validity of this statement for arbitrary p(i)
+ we will use the

light-front commutation properties of the ˇelds ψi(x
(i)
µ ) and locate on the ˇrst

place arbitrary operator ψi(x
(i)
µ ):

Ψom([p
(i)
+ ,p

(i)
⊥ ]) =

1

(2π)3N−3

∑
m1

δ(p
(i)
+ − p

(m1)
+ )×

×
∫ N∏

j 6=i
j=1

dx
(j)
− dx

(j)
⊥ × exp

i N∑
j 6=i
j=1

[(p
(j)
+ x

(j)
− − p

(j)
⊥ x

(j)
⊥ )

× (2.63)

×〈0|ψ1(0)|m1〉〈m1|ψ1(x
(1)
− ,x

(1)
⊥ )...ψi−1(x

(i−1)
− ,x

(i−1)
⊥ )ψi+1(x

(i+1)
− ,x

(i+1)
⊥ )|m〉.

Taking into account that for physical states p(m1)
+ ≥ 0, we see that

Ψom([p
(i)
+ ,p

(i)
⊥ ]) = 0 (2.64)

if even one of p(i)
+ < 0.

In a similar way one can show that

Ψmo([p
(i)
+ ,p

(i)
⊥ ]) = 0 (2.65)
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if even one of p(i)
+ > 0.

Taking into account (2.64) and (2.65) one can see the validity of Eqs. (2.60)
and (2.61).

Deˇne now the Fourier transform of the ®two-time¯ Green function:

G̃(X+ −X ′+; [x
(i)
− ,x

(i)
⊥ ]; [x

(i)′

− ,x
(i)′

⊥ ]) =
1

(2π)4N

∫ N∏
i=1

dp
(i)
+ dp

(i)
⊥ dp

(i)′

+ dp
(i)′

⊥ ×

× exp

{
−iP−(X+ −X ′+)− i

N∑
i=1

[(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )− (2.66)

− (p
(i)′

+ x
(i)′

− − p
(i)′

⊥ x
(i)′

⊥ )]
}
G̃(P−; [p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]).

Inserting (2.55) and (2.66) into (2.48) one obtains:

G̃(P−; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

=

∫
dz

[
σ1(z; [p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])

P− − z + iε
∓
σ2(z; [p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])

P− + z − iε

]
.

(2.67)

Here σ1 = 0 if even one of p(i)
+ or p(i)′

+ is less than zero, σ2 = 0 of even one of

p
(i)
+ or p(i)′

+ is bigger than zero.
Spectral representation (2.67) is an analogue of the spectral representation of

the ®two-time¯ Green function [3] with respect to total energy. Here, however, an
essential difference between the upper and lower parts of the light cone is realized
which is characteristic for the light-front quantum ˇeld theory. ®Retarded¯ part of
the Green function (ˇrst term) determines completely the behaviour of the Green

function for positive p(i)
+ , p(i)′

+ , ®advanced¯ part (second term) determines the

behaviour of the Green function for negative p(i)
+ , p(i)′

+ .
Taking into account the deˇnition of spectral densities and translation invari-

ance property of wave functions one can obtain the spectral representation of the
®two-time¯ Green function with respect to P 2 [25]:

G̃(P 2, [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

∞∫
0

ds
σ(s; [p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])

P 2 − s+ iε
, (2.68)

where
σ(s; [p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =
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= σ1(s; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])

N∏
i=1

θ(p
(i)
+ )θ(p

(i)′

+ )∓ (2.69)

∓σ2(s; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

N∏
i=1

θ(−p(i)
+ )θ(−p(i)′

+ ),

σ1(s; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

= i(2π)4N−1
∑
m

P+δ(s− P (m)2

)Ψom([p
(i)
+ ,p

(i)
⊥ ])Ψ̄om([p

(i)′

+ ,p
(i)′

⊥ ]), (2.70)

σ2(s; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

= i(2π)4N−1
∑
m

P+δ(s− P (m)2

)Ψmo([p
(i)
+ ,p

(i)
⊥ ])Ψ̄mo([p

(i)′

+ ,p
(i)′

⊥ ]). (2.71)

Taking into account the momentum conservation

N∑
i=1

p
(i)
+ =

N∑
i=1

p
(i)′

+ ,

N∑
i=1

p
(i)
⊥ =

N∑
i=1

p
(i)′

⊥ (2.72)

one can rewrite the ®two-time¯ Green function as follows:

G̃(P 2, [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

= δ

(
N∑
i=1

p
(i)
+ −

N∑
i=1

p
(i)′

+

)
δ(2)

(
N∑
i=1

p
(i)
⊥ −

N∑
i=1

p
(i)′

⊥

)
× (2.73)

×G̃(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])i=1,...,N−1.

Let us show now that the Green function (2.73) depends on its variables in a
special manner:

(P+)2N−2G̃(P, [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) ≡

≡ SP G̃(P ; [x(i),p
(i)
⊥ − x(i)P⊥]; [x(i)′ ,p

(i)′

⊥ − x(i)′P⊥])S−1
P . (2.74)

SP and S−1
P are the known transformation matrices acting on spin indices. For

scalar particles SP = 1.
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The fact that the Green function depends only on the scaling variables x(i)

and x(i)′ is the consequence of the invariance of the Green function under the
rotations in the (x0, x3)-plane:

G([x(i)
µ ]; [x(i)′

µ ]) =

= SλG([λx
(i)
+ , λ−1x

(i)
− ,x

(i)
⊥ ]; [λx

(i)′

+ , λ−1x
(i)′

− ,x
(i)′

⊥ ])S−1
λ . (2.75)

The matrix Sλ acts on the spin indices. Remind that an arbitrary 4-vector
A(A+, A−,A⊥) is transformed according to:

A+ → λA+, A− → λ−1A−, A⊥ → A⊥ (2.76)

under the rotations in the (x0, x3)-plane.
The property (2.75) is preserved for ®two-time¯ Green function. As a result

the Fourier transform is a homogeneous function of the variables P+, p
(i)
+ , p

(i)′

+ :

G̃(P−, P+,P⊥; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

= λ2N−2SλG̃(P 2;λP+,P⊥; [λp
(i)
+ ,p

(i)
⊥ ]; [λp

(i)′

+ ,p
(i)′

⊥ ])S−1
λ . (2.77)

From (2.77) it follows that G̃ depends only on the scaling variables x(i) and x(i)′ .
Consider the Lorentz transformation which is given by the 2-vector u⊥:

A+ → λA+; A− → A− + u⊥A⊥ +
1

2
A+u2

⊥; A⊥ → A⊥ +A+u⊥. (2.78)

The Green function is invariant under these transformations. For the Fourier
transform of the ®two-time¯ Green function it follows that:

G̃(P 2,P⊥; [x(i),p
(i)
⊥ ]; [x(i)′ ,p

(i)′

⊥ ]) =

= Su⊥G̃(P 2,P⊥ + P+u⊥; [x(i),p
(i)
⊥ + p

(i)
+ u⊥];×

×[x(i)′ ,p
(i)′

⊥ + p
(i)′

+ u⊥])S−1
u⊥ . (2.79)

Choosing u⊥ =
P⊥
P+

one obtains the formula (2.74).
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3. RELATIVISTIC ELASTIC FORM FACTORS AND SCATTERING
AMPLITUDES FOR COMPOSITE SYSTEMS

3.1. Formulation of the Method. The reaction of a composite systems on a
weak external perturbation corresponding to the local ˇeld A(x) is described in
quantum ˇeld theory by the expression [26,27]:

〈P, α| δS

δA(k)
|P ′, β〉 |A=0 = (2π)4δ(4)(P − P ′ − k)〈P, α|J(0)|P ′, β〉. (3.1)

Here J(x) is the local current of the system

J(x) = i
δS

δA(x)
S+, (3.2)

|P, α〉 and |P ′, β〉 are the state vectors of composite particles with momenta P and
P ′ and the sets of additional quantum numbers α and β, respectively, normalized
in a relativistically invariant manner

〈P, α|P ′, β〉 = 2P0(2π)3δ(3)(P−P′). (3.3)

Below we suggest a method of constructing relativistically covariant form
factors of composite systems in terms of light-front wave functions.

Consider ˇrst the case of two-particle system. Introduce the quantity R
deˇned by the vacuum expectation value of the chronologically ordered product
of Heisenberg ˇeld operators of scalar particles φi(xi) and the same local current
J(x):

R(x1, x2, x
′
1, x
′
2) = 〈0|T (φ1(x1)φ2(x2)J(0)φ+

1 (x′1)φ+
2 (x′2)|0〉 =

= (2π)−16

∫
d4p1d

4p2d
4p′1d

4p′2 × (3.4)

× exp

−i 2∑
j=1

(pjxj − p′jx′j)

R(p1, p2; p′1, p
′
2).

Introducing, as above, relative 4-coordinates and 4-momenta

X =
x1 + x2

2
, x = x1 − x2; X ′ =

x′1 + x′2
2

, x′ = x′1 − x′2;

P = p1 + p2; p =
p1 − p2

2
; P ′ = p′1 + p′2; p′ =

p′1 − p′2
2

, (3.5)
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we rewrite expression (3.4) in the form

R(X,x : X ′, x′) = (2π)−16

∫
d4Pd4pd4P ′d4p′×

× exp[−i(PX − P ′X ′ + px− p′x′)]R(P, p;P ′, p′). (3.6)

As is known [28], the quantity R can be presented in the form

R = GΓG (3.7)

or in the detailed form

R(X,x;X ′, x′) =

∫
d4X ′′d4x′′d4X ′′′d4x′′′G(X −X ′′;x, x′′)×

×Γ(X ′′, x′′;X ′′′, x′′′)G(X ′′′ −X ′;x′′′, x′). (3.8)

In the momentum space we get

R(P, p;P ′, p′) =

∫
d4p′′d4p′′′G(P, p, p′′)Γ(P, p′′;P ′, p′′′)G(P ′; p′′′, p′). (3.9)

Here G is two-particle Green function of ˇelds φi(xi) and the vertex function Γ
is the sum of all two-particle irreducible diagrams for the 5-poin Green function
(3.6) (see Fig.1).

Fig. 1.

Passing to the ®two-time¯ description in terms of light-front variables we
deˇne the quantity

R̃(P ; p+,p⊥;P ′; p′+,p
′
⊥) =

+∞∫
−∞

dp−dp
′
−R(P, p;P ′, p′). (3.10)

The quantity R̃ can be presented in the form

R̃ = G̃Γ̃G̃ (3.11)
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or in the detailed form

R̃(P ; p+,p⊥;P ′; p′+,p
′
⊥) =

P+/2∫
−P+/2

dp′′+

∫
dp′′⊥

P ′+/2∫
−P ′+/2

dp′′′+

∫
dp′′′⊥×

×G̃(P ; p+,p⊥; p′′+,p
′′
⊥)Γ̃(P ; p′′+,p

′′
⊥; p′′′+ ,p

′′′
⊥)× (3.12)

×G̃(P ′; p′′′+ ,p
′′′
⊥ ; p′+,p

′
⊥).

Here Γ̃ is the vertex integral operator. Let us show that the quantity Γ̃ deˇnes
the form factor of composite system. Starting from the spectral properties [29] of
the 5-point Green function (3.10), it is possible to show that the quantity R̃ has
the pole singularities near the points corresponding to the masses Mα and Mβ of
composite system:

R̃(P ; p+,p⊥;P ′; p′+,p
′
⊥) ∼=

P 2 →M2
α;P ′2 →M2

β

∼= [i(2π)4]2
ΨP,α(p+,p⊥)〈P, α|J(0)|P ′, β〉Ψ+

P ′,β(p′+,p
′
⊥)

(P 2 −M2
α); (P ′2 −M2

β)
. (3.13)

On the other hand, taking into account the pole singularities of the two-particle
®two-time¯ Green function

G̃(P ; p+,p⊥;P ′; p′+,p
′
⊥) ∼=

P 2 →M2
α

(3.14)

∼= i(2π)4
ΨP,α(p+,p⊥)Ψ+

P,α(p′+,p
′
⊥)

P 2 −M2
α

.

We ˇnd from (3.12):
R̃(P ; p+,p⊥;P ′; p′+,p

′
⊥) ∼=

∼= [i(2π)4]2
ΨP,α(P+,P⊥)Ψ+

P ′,β(P ′+,P
′
⊥)

(P 2 −M2
α); (Q2 −M2

β)
(3.15)

P+/2∫
−P+/2

dp′′+

∫
dp′′⊥

P ′+/2∫
−P ′+/2

dp′′′+

∫
dp′′′⊥

×Ψ+
P,α(p′′+,p

′′
⊥)Γ̃αβ(P ; p′′+,p

′′
⊥;P ′; p′′′+ ,p

′′′
⊥)ΨP ′,β(p′′′+ ,p

′′′
⊥ ),
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where

Γ̃αβ(P ; p+,p⊥;P ′; p′+,p
′
⊥) = Γ̃(P ; p+,p⊥;P ′; p′+,p

′
⊥)

∣∣∣∣∣ P2=M2
α

P ′2=M2
β

. (3.16)

Comparing equations (3.13) and (3.15) we get the following expression for the
matrix element of the local current J :

〈P, α|J(0)|P ′, β〉 =

P+/2∫
−P+/2

dp+

∫
dp⊥

P ′+/2∫
−P ′+/2

dp′+

∫
dp′⊥×

×Ψ+
P,α(p+,p⊥)Γ̃αβ(P ; p+,p⊥;P ′; p′+,p

′
⊥)ΨP ′,β(p′+,p

′
⊥). (3.17)

Equations (3.15) and (3.17) give an exact expression for vertex operator of the
composite system

Γ̃αβ(P ; p+,p⊥;P ′; p′+,p
′
⊥) =

= lim
P2→M2

α
P ′2→M2

β

P+/2∫
−P+/2

dp′′+

∫
dp′′⊥

P ′+/2∫
−P ′+/2

dp′′′+

∫
dp′′′⊥×

×G̃−1(P ; p+,p⊥; p′′+,p
′′
⊥)[G̃ΓG](P ; p′′+,p

′′
⊥;P ′; p′′′+ ,p

′′′
⊥)× (3.18)

×G̃−1(P ′; p′′′+ ,p
′′′
⊥ ; p′+,p

′
⊥).

in terms of 4- and 5-point Green functions G and Γ. Using the perturbation theory
methods for these functions one can construct the coupling constant expansion
for the vertex function of composite system.

Fig. 2.

3.2. Elastic Form Factor in the Impulse Ap-
proximation. To demonstrate this method we
consider the so-called impulse approximation for
the vertex operator Γ̃, which corresponds to the
limit of ®weakly bound¯ (noninteracting) parti-
cles (see Fig.2).

For the vertex operator corresponding to the
conserved vector current we ˇnd

Γ̃µ = Γ̃
(0)
1µ + Γ̃

(0)
2µ , (3.19)

Γ̃iµ = [G̃(0)]−1[ ˜G(0)Γ0
iµG

(0)][G̃(0)]−1, (3.20)
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where

Γ̃
(0)
iµ = (2π)4ei(pi + p′i)µδ

(4)(pj − p′j)[G
(0)
j (pj)]

−1 |i6=j . (3.21)

Here

G(0)(p1, p2) = G
(0)
1 (p1)G

(0)
2 (p2) = i2

2∏
i=1

(p2
i −m2

i )
−1, (3.22)

G(0)(p′1, p
′
2) = G

(0)
1 (p′1)G

(0)
2 (p′2) = i2

2∏
i=1

(p′
2
i −m2

i )
−1 (3.23)

are two-particle Green functions for free particles with masses mi and charges
ei. Then for the invariant form factor of the composite system deˇned by the
relation

〈P, α|Jµ(0)|P ′, β〉 = (P + P ′)µF (∆2); ∆ = P − P ′ (3.24)

in the reference frame, in which

P+ = P ′+, (P − P ′)2 = ∆2 = −∆2
⊥ = −(P⊥ −P′⊥)2 (3.25)

we have

F (∆2
⊥) =

ei(2π)2

2

1∫
0

dx

x(1 − x)

∫
dp⊥ΦP⊥=0(x,p⊥ + (1− x)∆⊥)

ΦP⊥=0(x,p⊥) + similar term with e2. (3.26)

Note that construction of relativistic form factors of composite systems in
other versions of relativistic description of bound states is considered, e.g., in
Refs. 29Ä31.

3.3. Relativistic Form Factor for the Many-Body System. Let's construct
now the form factor for the relativistic many-body system in terms of the many-

body light-front wave functions ΦP ([x(i),p
(i)
⊥ ]). Consider, as in the case of two

constituents, the quantity R, which is deˇned by the vacuum expectation value

of the chronologically ordered product of the Heisenberg ˇeld operators φi(x
(i)
µ )

and the local current J(x)

R([x(i)
µ ]; [x(i)′

µ ]) =

= 〈0|T (φ1(x(1)
µ )...φN (x(N)

µ )J(0)φ+
1 (x(1)′

µ )...φ+
N (x(N)′

µ ))|0〉 = (3.27)
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= (2π)−4N

∫ N∏
i=1

d4p(i)d4p(i)′ exp

[
−i

N∑
i=1

(p(i)x(i) − p(i)′x(i)′)

]
R([p(i)]; [p(i)′ ]).

The quantity R can be presented in the form

R = GΓG. (3.28)

Multiplication in (3.28) has to be understood as an integration over the 4-co-

ordinates of particles. G is the many-body Green function of the ˇelds φi(x
(i)
µ )

and the vertex function Γ is deˇned by the sum of the irreducible diagrams of
the (2N + 1)-point function (3.27).

Proceeding now to the light-front description we introduce the quantity

R̃([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) by the relation

R̃([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) =

=

∞∫
−∞

N∏
i=1

dp
(i)
− d

4p
(i)′

− δ

(
P− −

N∑
i=1

p
(i)
−

)
δ

(
P ′− −

N∑
i=1

p
(i)′

−

)
R([p(i)]; [p(i)′ ])

(3.29)

and write it in the form

R̃ = G̃Γ̃G̃. (3.30)

Multiplication in Eq. (3.30) has to be understood in the operator sense:

ÃB̃ =

P+∫
0

N∏
i=1

dp
(i)′′

+ δ

(
P+ −

N∑
i=1

p
(i)′′

+

)∫ N∏
i=1

dp
(i)′

⊥ δ(α)

(
P⊥ −

N∑
i=1

p
(i)′′

⊥

)
×

Ã([p
(i)
+ ,p

(i)
⊥ ]; [p′′+,p

′′
⊥])B̃([p′′+,p

′′]; [p′+, p
′]). (3.31)

From the spectral properties of the function G̃ it follows that R̃ possesses the
double pole singularities

R̃([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) ∼=

∼= [i(2π)4]2
ΨP,α([p

(i)
+ ,p

(i)
⊥ ])〈P, α|J(0)|P ′, β〉Ψ+

P ′,β([p
(i)′

+ ,p
(i)′

⊥ ])

(P 2 −M2
α); (P ′2 −M2

β)
(3.32)
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in the vicinity of the points, where N -particle system forms the bound states with
masses Mα and Mβ and sets of other quantum numbers α and β, respectively.

On the other hand, knowing the pole singularities of the Green function one
can reduce the Eq. (3.32) to the form

R̃([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) ∼=

∼= [i(2π)4]2
ΨP,α([p

(i)
+ ,p

(i)
⊥ ])Ψ+

P ′,β([p
(i)′

+ ,p
(i)′

⊥ ])

(P 2 −M2
α); (P ′2 −M2

β)
×

×
P+∫
0

N∏
i=1

dp
(i)′′

+ δ

(
P+ −

N∑
i=1

p
(i)′′

+

)∫ N∏
i=1

dp
(i)′′

⊥ δ(2)

(
P⊥ −

N∑
i=1

p
(i)′′

⊥

)
×

(3.33)

×
P ′+∫
0

N∏
i=1

dp
(i)′′′

+ δ

(
P ′+ −

N∑
i=1

p
(i)′′′

+

)∫ N∏
i=1

dp
(i)′′′

+ δ(2)

(
P′⊥ −

N∑
i=1

p
(i)′′′

+

)
×

×Ψ+
P,α([p

(i)′′

+ ,p
(i)′′

⊥ ])Γ̃αβ([p
(i)′′

+ ,p
(i)′′

⊥ ]; [p
(i)′′′

+ ,p
(i)′′′

⊥ ])Ψ+
P ′,β([p

(i)′′′

+ ,p
(i)′′′

⊥ ]).

Comparing (3.32) with (3.33) we get the following expression for the matrix
element of the bound state current:

〈P, α|J(0)|P ′, β〉 =

P+∫
0

N∏
i=1

dp
(i)
+ δ

(
P+ −

N∑
i=1

p
(i)
+

)∫ N∏
i=1

dp
(i)
⊥ δ

(2)

(
P⊥ −

N∑
i=1

p
(i)
⊥

)
× (3.34)

P ′+∫
0

N∏
i=1

dp
(i)′

+ δ

(
P ′+ −

N∑
i=1

p
(i)′

+

)∫ N∏
i=1

dp
(i)′

⊥ δ(2)

(
P′⊥ −

N∑
i=1

p
(i)′

⊥

)
×

×Ψ+
P,α([p

(i)
+ ,p

(i)
⊥ ])Γ̃αβ([p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ])ΨP ′,β([p
(i)′

+ ,p
(i)′

⊥ ]).

The vertex operator Γαβ can be constructed, using, for instance, perturbation
theory methods of quantum ˇeld theory. Phenomenological vertex operators can
also be used. Here we consider the so-called ®impulse approximation¯. In this
case we obtain:

〈P, α|Jµ(0)|P ′, β〉 =
N∑
k=1

〈P, α|Jµ(0)|P ′, β〉k (3.35)
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where, for instance

〈P, α|J+(0)|P ′, β〉k = (P+ + P ′+)Fk(−∆2
⊥) =

=
−(2π)4ek(P+ + P ′+)

(2i)N+1(2πi)N−1

1∫
0

N∏
i=1

dx(i)

x(i)
× (3.36)

×δ
(

1−
N∑
i=1

x(i)

)∫ N∏
i=1

dp
(i)
⊥ δ

(2)

(
N∑
i=1

p
(i)
⊥

)
×

×Φ+
P⊥=0,α([x(i),p

(i)
⊥ − x(i)∆⊥]i6=k, x

(k),p
(k)
⊥ +

+(1− x(k))∆⊥)ΦP⊥=0,β([x(i),p
(i)
⊥ ]).

Taking into account the normalization condition for the wave functions for ∆⊥= 0
we get:

F (∆2 = 0) =

N∑
k=1

ek. (3.37)

Thus, the form factor at zero momentum transfer is normalized to the total
charge of the system. Note, that problems of normalization of three-dimensional
relativistic wave function have been considered in Ref. 32.

3.4. Scattering of Relativistic Composite Systems. Experimental study of
high energy processes during the last decades revealed a number of scaling prop-
erties of observable quantities. Many of these properties can be understood on the
basis of the composite quark parton structure of elementary particles. In particu-
lar, the asymptotic scaling property of differential cross section of hadron-hadron
scattering

do

dt

∣∣∣ s→∞
|t/s|=const.

∼ 1

sN
f(cos θs), (3.38)

where N is integer number, can be explained in the framework of dimensional
analysis and the assumption on three-quark structure of baryons and quark anti-
quark structure of mesons (quark counting rules) [33,34].

In connection with the development of composite models of elementary parti-
cles a problem of the description of their interactions becomes of special interest.
Study of interactions of relativistic composite systems is important also in con-
nection with current and future experiments with beams of relativistic nuclei.
Here we outline a method for the treatment of problems of that kind [35]. Below
we present a description of the scattering of two composite particles. It will be
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shown that some simple assumption on the hadron interactions in the scattering
process allows one to reproduce the results of quark counting rules.

Consider the eight-point Green function G:

G(x1, x2, x3, x4;x′1, x
′
2, x
′
3, x
′
4) =

= 〈0|T (φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ+
1 (x′1)φ+

2 (x′2)φ+
3 (x′3)φ+

4 (x′4))|0〉 =

= [(2π)4]−8

∫ 4∏
i=1

d4pid
4p′i exp

[
−i

4∑
i=1

(pixi − p′ix′i)
]
×

×G(p1, p2, p3, p4; p′1, p
′
2, p
′
3, p
′
4) =

= [(2π)4]−8

∫
d4P (12)d4p(12)d4P (34)d4p(34)d4P ′

(12)
d4p′

(12)
d4P ′

(34)
d4p′

(34) ×
(3.39)

× exp[−i(P (12)X(12) + P (34)X(34) + p(12)x(12) + p(34)x(34)−

−P ′(12)
X ′

(12)
+ P ′

(34)
X ′

(34)
+ p′

(12)
x′

(12)
+ p′

(34)
x′

(34)
)]×

×G(P (12), p(12), P (34), p(34);P ′
(12)

, p′
(12)

, P ′
(34)

, p′
(34)

).

In (3.39) the momenta P (12), p(12), P (34), p(34);P ′
(12)

, p′
(12)

, P ′
(34)

, p′
(34) are in-

troduced according to the following equations

P (12) = p1 + p2, p
(12) =

p1 − p2

2
, P (34) = p3 + p4, p

(34) =
p3 − p4

2
,

P ′
(12)

= p′1 + p′2, p
′(12)

=
p′1 − p′2

2
, P ′

(34)
= p′3 + p′4, p

′(34)
=
p′3 − p′4

2
.

(3.40)

Passing now to the ®two-time¯ description, we introduce the light-front vari-
ables and deˇne the quantity

G̃(P (12), p
(12)
+ ,p

(12)
⊥ ;P (34), p

(34)
+ ,p

(34)
⊥ ;P ′

(12)
, p′

(12)
+ ,p′

(12)
⊥ ;P ′

(34)
, p′

(34)
+ ,p′

(34)
⊥ ) =

=

∞∫
−∞

dp
(12)
− dp

(34)
− dp′

(12)
− dp′

(34)
− × (3.41)

×G(P (12), p(12), P (34), p(34);P ′
(12)

, p′
(12)

, P ′
(34)

, p′
(34)

).
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Introduce now the quantity M by the relation:

G(P (12), p(12), P (34), p(34);P ′
(12)

, p′
(12)

, P ′
(34)

, p′
(34)

) =

=

∫
d4p(12)′′d4p(34)′′d4p(12)′′′d4p(34)′′′×

×G12(P (12), p(12), p(12)′′)G34(P (34), p(34), p(34)′′)× (3.42)

×M(P (12), p(12)′′ ;P (34), p(34)′′ ;P ′
(12)

, P (12)′′′ ;P (34), P (34)′′′)×

×G12(P ′
(12)

, p(12)′′′ , p(12)′)G34(P ′
(34)

, p(34)′′′ , p(34)′) ≡ (G12G34)M(G12G34).

The quantity G̃ can be presented in the form (here and in what follows we omit
the arguments which are related to the relative momenta and this will not cause
any misunderstanding):

G̃(P (12), P (34), P ′
(12)

, P ′
(34)

) =

= G̃12(P (12))G̃34(P (34))M̃(P (12), P (34), P ′
(12)

, P ′
(34)

)G̃12(P ′
(12)

)G̃34(P ′
(34)

).
(3.43)

The multiplication in the (3.43) has to be understood in the following sense

ÃB̃ =

P
(12)
+ /2∫

−P (12)
+ /2

dp
(12)
+

P
(34)
+ /2∫

−P (34)
+ /2

dp
(34)
+

∫
dp

(12)
⊥

∫
dp

(34)
⊥ ×

×Ã(..., p
(12)
+ ,p

(12)
⊥ ; p

(34)
+ ,p

(34)
⊥ )B̃(p

(12)
+ ,p

(12)
⊥ ; p

(34)
+ ,p

(34)
⊥ , ...) (3.44)

and dots correspond to the set of other arguments the operators Ã and B̃ can
depend on.

Knowing the pole singularities of the two-particle Green functions G̃12, G̃34

one can show that in the vicinity of these poles the function G̃ looks as follows:

G̃(P (12), P (34), P ′
(12)

, P ′
(34)

) ∼=

∼= [i(2π)4]4
Ψ12(P (12))Ψ34(P (34))Ψ+

12(P ′
(12)

)Ψ+
34(P ′

(34)
)

(P (12)2 −M2
12)(P (34)2 −M2

34)(P ′(12)2 −M2
12)(P ′(34)2 −M2

34)
×

(3.45)
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×Ψ+
12(P (12))Ψ+

34(P (34))M̃(P (12), P (34), P ′
(12)

, P ′
(34)

)Ψ12(P ′
(12)

)Ψ+
34(P ′

(34)
).

Here
M̃1234 = lim

P (12)2→M2
12,P

(34)2→M2
34

P ′(12)2→M2
12
,P ′(34)2→M2

34

G̃−1
12 (P (12))G̃−1

34 (P (34))·

· ˜G12G34MG12G34(P (12), P (34), P ′
(12)

, P ′
(34)

) · G̃−1
12 (P ′

(12)
)G̃−1

34 (P ′
(34)

),
(3.46)

M2
12, M

2
34, M

′2
12, M

′2
34 are the masses of corresponding states.

From the equations (3.43) and (3.45) we get the following expression for the
scattering amplitude

T (P (12), P (34), P ′
(12)

, P ′
(34)

) = Ψ+
12(P (12))Ψ+

34(P (34))×

×M̃(P (12), P (12), P ′
(12)

, P ′
(12)

)Ψ12(P ′
(12)

)Ψ+
34(P ′

(34)
). (3.47)

Eq. (3.47) gives a general expression for the scattering amplitude in the case of
scattering of composite particles. The detailed form of the scattering amplitude
depends on the interaction mechanism in the intermediate state and on a speciˇc

Fig. 3.

form of the wave functions of the scattered objects.
3.5. Constituent Interchange Mechanism. Considering

the constituent interchange mechanism (Fig.3) one gets the
following expression for the scattering amplitude

T =
−1

2(2π)3

1∫
0

dx

x2(1 − x)2

∫
dp⊥Φ

+(12)
P⊥=0(x,p⊥ − x∆

(u)
⊥ +

+(1− x)∆
(t)
⊥ )Φ

+(34)
P⊥=0(x,p⊥)×

×[M2
12 +M2

34 − S(x,p⊥ + x∆
(t)
⊥ − (1 − x)∆

(u)
⊥ )− S(x,p⊥)]× (3.48)

×Φ
(12)
P⊥=0(x,p⊥ − x∆

(u)
⊥ )Φ

(34)
P⊥=0(x,p⊥ + (1 − x)∆

(t)
⊥ ),

where ∆
(t)
⊥ = −t, ∆

(u)
⊥ = −u.

Here the notation has been introduced

S(x,p⊥) =
m2

1 + p2
⊥

1− x +
m2

2 + p2
⊥

x
(3.49)
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and the following properties of wave functions

Φ(x,p⊥) = Φ(x,−p⊥),Φ(x,p⊥) = Φ(1− x,p⊥) (3.50)

have been used.
Let us choose now the wave function of the composite particles in the form

ΦN (x,p⊥) =
φN (x)

[S(x,p⊥)]N
, N = A,B,C,D (3.51)

A,B and C,D denote the hadrons before and after the scattering and correspond-
ing powers, respectively.

Inserting the wave functions (3.51) into the Eq. (3.48) for the scattering
amplitude one gets in the asymptotic region

T
∼

s→∞
|t|→∞

1

sA+ C +D − 1

(
1 + z

2

)−C (
1− z

2

)−D
f(z), (3.52)

where

f(z) =

1∫
0

dxφ+
A(x)φ̃+

B(x)φC(x)φD(x)[
(1 − x)2 1−z

2 + x2 1+z
2

]A [
(1 − x)2 1 + z

2
+ x2 1− z

2

]
×

×[x(1− x)]A+B+C+D−3x−2C(1− x)−2D, (3.53)

φ̃+
B(x) =

−1

(2π)3

∫
dp⊥Φ+

B(x,p⊥)[x(1 − x)]−B

z = cosϑs, where ϑs is the scattering angle in the c.m.s.

−t ∼=
s

2
(1 − z), −u ∼=

s

2
(1 + z).

Eq.(3.53) is in close connection with the results of quark counting rules [33,34,36].

4. DEEP INELASTIC FORM FACTORS OF COMPOSITE SYSTEMS

The great interest to deep inelastic interaction processes is caused by the
possibility of studying the internal structure of hadrons and nuclei experimentally
and checking different theoretical models based on the assumptions about com-
posite nature of strongly interacting particles. The main part of experimentally
observed properties of these processes (in particular, the scale properties of struc-
ture functions) have been explained in the framework of composite quark-parton
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models of hadrons, in which hadron is considered as a bound state of some par-
allelly moving pointlike constituents. Interaction between constituents and their
transverse motion inside hadron is neglected [37,38].

More precise measurements in wider range of kinematic variables have led
to the observation of deviations from exact scale invariance in the behaviour
of structure functions [39Ä41]. Attempts were made to explain these deviations
on the kinematical (search for new scale-invariant variables [42]) and dynamical
(taking into account chromodynamical corrections [43]) basis. Quark-parton pic-
ture of the deep inelastic scattering in the quasi-potential approach can be found
in Ref. 44.

Here we incorporate the transverse motion of constituents in the composite
system, which leads to the violation of Bjorken scaling of structure functions.

4.1. Construction of the Tensor Wµν . Consider the quantity Rµν , which is
deˇned by the vacuum expectation value of the chronologically ordered product

of the Heisenberg ˇeld operators φi(x
(i)
µ ) and local currents Jµ and Jν :

Rµν([x(i)
µ ]; [x(i)′

µ ]; z) =

= 〈0|T (φ1(x(1)
µ )...φN (x(N)

µ )Jµ(z)Jν(0)φ+
1 (x(1)′

µ )...φ+
N (x(N)′

µ ))|0〉 =

= (2π)−3N

∫ N∏
i=1

d4p(i)d4p(i)′ exp

[
−i

N∑
i=1

(p(i)x(i) − p(i)′x(i)′)

]
× (4.1)

×Rµν([p(i)
µ ]; [p(i)′

µ ]; z).

Here [x
(i)
µ ], [x

(i)′

µ ], [p
(i)
µ ], [p

(i)′

µ ] are the sets of corresponding 4-vectors. The quan-
tity Rµν can be presented as (see Fig.4)

Rµν = GΓµνG,

where G is the N -particle Green function of ˇelds φi(x
(i)
µ ) and ®two-photon¯

vertex function Γµν is deˇned by the sum of the irreducible diagrams with 2N+2
points (legs).

Fig. 4.
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Introduce now the three-dimensional quantity R̃µν equating all x(i)
+ = x+

and x(i)′

+ = x′+ in (4.1)

R̃µν(x+, [x
(i)
− ,x

(i)
⊥ ];x′+, [x

(i)′

− ,x
(i)′

⊥ ]; z) =

= 〈0|T (φ1(x+, x
(i)
− ,x

(i)
⊥ )...φN (x+, x

(N)
− ,x

(N)
⊥ )Jµ(z)Jν(0)×

×φ+
1 (x′+, x

(i)′

− ,x
(i)′

⊥ )...φ+
N (x′+, x

(N)′

− ,x
(N)′

⊥ ))|0〉 = (4.2)

= (2π)−3N

∫ N∏
i=1

(dp
(i)
+ , dp

(i)
⊥ )(dp

(i)′

+ , dp
(i)′

⊥ )R̃µν([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]; z)×

× exp

[
−i(x+P− − x′+P ′−)− i

N∑
i=1

(p
(i)
+ x

(i)
− − p

(i)
+ x

(i)
− ) + i

N∑
i=1

(p
(i)′

+ x
(i)′

− − p
(i)′

⊥ x
(i)′

⊥ )

]
.

Fourier transforms of Rµν and R̃µν are related to each other in the following
way:

R̃µν([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]; z) =

∞∫
−∞

N∏
i=1

dp
(i)
− dp

(i)′

− δ×

×
(
P−−

N∑
i=1

p
(i)
−

)
δ

(
P ′− −

N∑
i=1

p
(i)′

−

)
Rµν([p(i)]; [p(i)′ ]; z). (4.3)

Single out now the contribution of N -particle bound states in the matrix
element (4.3) expressing the T -product via θ-functions and using the compliteness
of physical states:

R̃µν([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]; z) ∼=

∼= [i(2π)4]2
ΨP ([p

(i)
+ ,p

(i)
⊥ ])〈P, α|T (Jµ(z)Jν(0))|P ′, β〉Ψ+

P ′([p
(i)′

+ ,p
(i)′

⊥ ])

(P 2 −M2
α)(P ′2 −M2

β)
. (4.4)

Finally, we get the following expression for the matrix element of T -product
of currents:

〈P, α|T (Jµ(z)Jν(0))|P ′, β〉 =

=

P+∫
0

N∏
i=1

dp
(i)′′

+ δ

(
P+ −

N∑
i=1

p
(i)′′

+

)∫ N∏
i=1

dp
(i)′′

⊥ δ(2)

(
P⊥ −

N∑
i=1

p
(i)′′

⊥

)
×

(4.5)
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=

p′+∫
0

N∏
i=1

dp
(i)′′′

+ δ

(
P ′+ −

N∑
p

(i)′′′

−

)∫ N∏
i=1

dp
(i)′′′

⊥ δ(2)

(
P′⊥ −

N∑
i=1

p
(i)′′′

⊥

)
×

×Ψ+
P ([p

(i)′′

+ ,p
(i)′′

⊥ ])Γ̃µν([p
(i)′′

+ ,p
(i)′′

⊥ ]; [p
(i)′′′

+ ,p
(i)′′′

⊥ ]; z)ΨP ′([p
(i)′′′

+ ,p
(i)′′′

⊥ ]).

Fourier transform of this matrix element deˇned the amplitude of virtual
Compton scattering of photon with space-like 4-momentum qµ on the hadron
with 4-momentum Pµ:

Tµν(P, q) = i

∫
d4zelqz〈P, α|T (Jµ(z)Jν(0))|P, α〉 =

=

P+∫
0

N∏
i=1

dp
(i)′′

+

(
P+ −

N∑
p

(i)′′

+

)∫ N∏
i=1

dp
(i)′′

⊥ δ(2)

(
P⊥ −

N∑
i=1

p
(i)′′

⊥

)
× (4.6)

=

P ′+∫
0

N∏
i=1

dp
(i)′′′

+ δ

(
P ′+ −

N∑
p

(i)′′′

+

)∫ N∏
i=1

dp
(i)′′′

⊥ δ(2)

(
P′⊥ −

N∑
i=1

p
(i)′′′

⊥

)
×

×Ψ+
P ([p

(i)′′

+ ,p
(i)′′

⊥ ])

∫
d4zelqzΓ̃µν([p

(i)′′

+ ,p
(i)′′

⊥ ]; [p
(i)′′′

+ ,p
(i)′′′

⊥ ]; z)×

×ΨP ′([p
(i)′′′

+ ,p
(i)′′′

⊥ ]).

According to optical theorem the tensor Wµν , which deˇnes the hadronic part
of deep inelastic lepton-hadron scattering cross section is related to the imaginary
part of the amplitude of the zero angle virtual Compton scattering in the following
way:

Wµν(P, q) =
∑
α

∫
d4zeiqz〈P, α|T (Jµ(z)Jν(0))|P, α〉 =

1

2π
ImTµν(P, q).

(4.7)
Taking into account the current conservation, the tensorWµν can be expressed

via two invariant structure functions W1, and W2:

Wµν(P, q) =

(
−gµν +

qµqν

q2

)
W1(q2, ν)+

+
1

M2

(
Pµ −

Pq

q2
qµ

)(
Pν −

Pq

q2
qν

)
W2(q2, ν),

where Mν = Pq, M is the hadron mass.
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Thus, using Eqs. (4.6)Ä(4.8) one can express the structure functions of deep
inelastic lepton-hadron scattering in terms of the light-front many-body wave
functions, describing the internal motion of partons inside hadron, and the ®two-
photon¯ vertex function:

Γ̃µν([p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]; q) =

∫
d4zelqzΓ̃µν([p

(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]; z) =

=

∫
d4zelqz

P+∫
0

N∏
i=1

dp
(i)′′

+ δ

(
P+ −

N∑
p

(i)′′

+

)∫ N∏
i=1

dp
(i)′′

⊥ δ(2) × (4.8)

×
(

P⊥ −
N∑
i=1

p
(i)′′

⊥

)
×

=

P ′+∫
0

N∏
i=1

dp
(i)′′′

+ δ

(
P ′+ −

N∑
p

(i)′′′

−

)∫ N∏
i=1

dp
(i)′′′

⊥ δ(2)

(
P′⊥ −

N∑
i=1

p
(i)′′′

⊥

)
×

×G̃−1(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′′

+ ,p
(i)′′

⊥ ])

×[ ˜GΓµνG]([p
(i)′′

+ ,p
(i)′′

⊥ ][p
(i)′′′

+ ,p
(i)′′′

⊥ ])×

×G̃−1(P ′; [p
(i)′′′

+ ,p
(i)′′′

⊥ ][p
(i)′

+ ,p
(i)′

⊥ ])

4.2. Lowest Order in the Electromagnetic Interaction. The ®two-photon¯
vertex operator Γ̃µν can be constructed using methods of perturbation theory and

Fig. 5.

expanding the functions G̃−1 and
R̃µν = ˜GΓµνG in the series in cou-
pling constant. In the lowest order
two types of diagrams, shown in Fig.5

contribute to Γ̃
(0)
µν .

Assuming that the partons consti-
tuting hadron are on mass shell and
neglecting small terms of the order of

P− −
N∑
j=1

(p
(j)2
⊥ +m(j)2)/p

(j)
+ , we ob-

tain that diagrams of type b) do not contribute to Γ̃
(0)
µν . Summing the contribution

of all diagrams of type a), inserting into the expression (4.6) for virtual Compton
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scattering amplitude and extracting the imaginary part we obtain for the structure
functions W1 and W2:

W1(q2, ν) =
1

8(4π)N−1

1∫
0

N∏
i=1

dx(i)

x(i)
δ

(
1−

N∑
i=1

x(i)

)
×

∫ N∏
i=1

dp
(i)
⊥ δ

(2)

(
P⊥ −

N∑
p

(i)
⊥

)
|ΦP ([x(i),p

(i)
⊥ )|2×

×
N∑
i=1

e2
i

x(i)

[
(Mν + 2p̄(i)P )2

M2(1− ν2/q2)
− (4m(i)2 − q2)

]
δ(q2 + 2p̄(i)q), (4.9a)

νW2(q2, ν) =
1

8(4π)N−1

ν

(1− ν2/q2)

1∫
0

N∏
i=1

dx(i)

x(i)
δ

(
1−

N∑
i=1

x(i)

)
×

∫ N∏
i=1

dp
(i)
⊥ δ

(2)

(
P⊥ −

N∑
p

(i)
⊥

)
|Φp([x(i),p

(i)
⊥ )|2×

×
N∑
i=1

{
e2
i

x(i)

[
3(Mν + 2p̄(i)P )2

M2(1− ν2/q2)
− (4m(i)2 − q2)

]
δ(q2 + 2p̄(i)q)

}
. (4.9b)

Here p̄(i) is the momentum of parton on the mass shell p̄(i) =

=

(
p

(i)2

⊥ +m(i)2

p
(i)
+

, p
(i)
+ ,p⊥

)
.

For further consideration we proceed to the frame, where the virtual photon
and hadron are moving along the z axis:

P = (P−, P+,0⊥), q = (q−, q+,0⊥).

In this frame

2p̄(i)P = x(i)M2 +
p

(i)2

⊥ +m(i)2

x(i)

and δ-function in (4.9) can be rewritten in the form:

δ(q2 + 2p̄(i)q) =
1

ξ
δ

[
p

(i)2

⊥ +m(i)2

x(i)
+
Q2(ξ − x(i))

ξ2

]
. (4.10)

Here we have introduced the variables Q2 = −q2 and

ξ = − q+

P+
=

Q2

M(ν +
√
ν2 +Q2)

. (4.11)
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Scaling properties of structure functions with respect of variable ξ are dis-
cussed in several papers [50Ä53]. The Nachtman variable ξ is the generalization
of the usual Bjorken variable xB taking into account the hadron mass and is
related to xB by following relation:

ξ = − 2xB

1 +
√

1 + 4MxB
Q2

. (4.12)

If one neglects the masses and transverse momenta of partons (m(i)2 <<

Q2,p
(i)2
⊥ << Q2), the δ-function takes the form

δ(2p̄(i)q −Q2) =
ξ

Q2
δ(x(i) − ξ).

Then the structure function W1 vanishes and for the structure function νW2 we
obtain

νW2(Q2, ξ) =
MQ2

2(4π)N−1ξ

(Q2/ξ2 −M2)

(Q2/ξ2 +M2)2
×

1∫
0

N∏
i=1

dx(i)

x(i)
δ

(
1−

N∑
i=1

x(i)

)
× (4.13)

∫ N∏
i=1

dp
(i)
⊥ δ

(2)

(
N∑
i=1

p
(i)
⊥

)
|ΦP ([x(i),p

(i)
⊥ )|2

N∑
i=1

e2
i δ(x

(i) − ξ).

In the asymptotic limit (ν,Q2 >> M2, xB is ˇxed) the variable ξ coincides
with the Bjorken variable xB and we obtain that the structure function νW2, is
scale invariant with respect to the variable xB :

νW2(xB) =
MxB

2(4π)N−1

1∫
0

N∏
i=1

dx(i)

x(i)
δ

(
1−

N∑
i=1

x(i)

)
×

∫ N∏
i=1

dp
(i)
⊥ δ

(2)

(
N∑
i=1

p
(i)
⊥

)
|ΦP ([x(i),p

(i)
⊥ ])|2

N∑
i=1

e2
i δ(x

(i) − xB). (4.14)

Assuming that the interaction kernel does not depend on the total energy and
using the explicit expression for the Green function of N free particles we obtain
the following sum rule:

1∫
0

νW2(xB)

MxB
dxB =

N∑
i=1

e2
i . (4.15)
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4.3. Model Parametrisation of the Wave Function. Consider now the case,
when the hadron consists of two constituents. This case corresponds to meson,
which consists of quark and antiquark. We will neglect contributions of gluons
and quark-antiquark sea. Expressions for structure functions in the case N = 2
have the form:

W1(Q2, ξ) =
e2

1 + e2
2

8πξ

1∫
α

dx

x(1− x)

∫
dp⊥|ΦP (x,p⊥)|2×

×
[
Q2x(x− ξ)

ξ2
−m2

]
δ

[
p2
⊥ +m2 − Q2x(x− ξ)

ξ2

]
,

νW2(Q2, ξ) =
e2

1 + e2
2

8πξ
MQ2 Q2/ξ2 −M2

(Q2/ξ2 +M2)2

1∫
a

dx

x(1 − x)

∫
dp⊥|ΦP (x,p⊥)|2×

×
[

6Q2x(x− ξ)
ξ2

+Q2 − 2m2

]
δ

(
p2
⊥ +m2 − Q2x(x− ξ)

ξ2

)
. (4.16)

Here we assume that masses of constituents are equal to each other m(1) =
m(2) = m.

In (4.16) the limit of integration over x is deˇned from the δ-function:

a =
ξ

2

(
1 +

√
1 +

4m2

Q2

)
. (4.17)

Neglecting masses and transverse momenta of quarks we obtain that the
structure functionW1, vanishes and the structure function νW2 takes the following
form:

νW2(Q2, ξ) =
(e2

1 + e2
2)MQ2

8πξ2(1− ξ)
Q2/ξ2 −M2

(Q2/ξ2 +M2)2

∫
dp⊥|ΦP (ξ,p⊥)|2. (4.18)

If we choose the following parametrization for wave function ΦP

ΦP (x,p⊥) = C

[
p2
⊥ +m2

x(1 − x)
− α

]−n
(4.19)

for the structure function νW2 we get

νW2(Q2, ξ) =
(e2

1 + e2
2)MQ2

8

Q2/ξ2 −M2

(Q2/ξ2 +M2)2

|C|2ξ2n−1(1− ξ)2n−1

(2n− 1)[m2 − αξ(1− ξ)]2n−1
.

(4.20)
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In the Bjorken limit (Q2 >> m2, ξ → xB) for n = 1 we obtain [45]:

νW2(xB) =
e2

1 + e2
2

8
M |C|2 xB(1− xB)

m2 − αxB(1 − xB)
. (4.21)

5. INCLUSIVE PROCESSES IN LIGHT-FRONT FORMALISM

Inclusive processes which have been proposed by Logunov and collaborators
[46] are in effective tool to study the hadron structure at high energy. Conse-
quences of a number of theoretical models have been formulated in this way.
Majority of experiments in the relativistic nuclear physics (in particular, experi-
ments on the cumulative production predicted by Baldin [47]) are also inclusive.

In this section expressions for inclusive cross sections in terms of the light-
front quasi-potential wave functions are given [48].

5.1. Some Preliminary Relations. Let us construct the scattering amplitudes
of the multiparticle production processes. ®Two-time¯ N -particle Green function
obeys the following equation:

G̃(N) = G̃
(N)
0 + G̃

(N)
0 V (N)G̃(N). (5.1)

Here V (N) is the interaction kernel for N particles which can be constructed
by the perturbation expansion.

If the total Hamiltonian processes one particles states with quantum num-
bers of (N − k) and k particles of the initial state and k1, ...kM particles of
the ˇnal state the Green function possesses the poles with respect to the vari-

ables P 2
A =

(
k∑
i=1

p(i)

)2

, P 2
B =

(
N∑

i=k+1

p(i)

)2

, P 2
1 =

(
k1∑
i=1

p(i)′
)2

, ..., P 2
M = N∑

i=N−k1−
−k2...kM−1

p(i)

2

. In the vicinity of these poles it is of the form:

G(P ; [p(i)]; [p(i)′ ]) ≈

≈ χ1(p(i)′ , ..., p(k1)′)...χM (p(N−k1−...−kM)′ , ..., p(N)′)
M∏
i=1

(P 2
i −M2

i + iε)

× (5.2)

×T (P1, ..., PM ;PA, PB)χ̄A(p(1), ..., p(k))χ̄B(p(k+1), ..., p(N))

(P 2
A −M2

A + iε)(P 2
B −M2

B + iε)
.
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T is the scattering amplitude corresponding to the process: A+B → 1+2+...+M .
The ®two-time¯ Green function has the following pole structure in the vicinity

of corresponding poles:

G(N)(P ; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]) ∼= [2(2π)3]N−M−1×

×

 Ψ1([p
(i)′

+ ,p
(i)′

⊥ ]...Ψ̄M ([p
(i)′

+ ,p
(i)′

⊥ ])T Ψ̄A([p
(i)
+ ,p

(i)
⊥ ])Ψ̄B[p

(i)
+ ,p

(i)
⊥ ])

x(i)′ ...x(M)′

(
P 2 −

M∑
i=1

P
(i)2

⊥ +M(i)2

x(i)

)
x(A)...x(B)

(
P 2 −

M∑
i=A,B

P
(i)2

⊥ +M(i)2

x(i)

)
 .

(5.3)

Deˇne transition operators M (N)
αβ :

G(N) = G(N)
α M

(N)
α,ABG

(N)
AB +R,

where G
(N)
α is the Green functions which take into account interactions only

inside the subsystems. α denotes the ˇnal states.
5.2. Production of Leading Hadrons with Large Transverse Momenta.

Taking into account expression for Green functions one obtains the expression
for the transition amplitude of the inclusive process A + B → C + X with the
leading hadron C (assume that hadron C coincides with hadron A, or it is its
excited state)

T (AB → C) = [2(2π)N−M−1]×

×
∫ C∏

i=1

dx(i)′dp
(i)′

⊥ C+δ

(
C+ −

C∑
i=1

p
(i)′

+

)
δ(2)

(
C⊥ −

C∑
i=1

p
(i)′

⊥

)
×

×
A+B∏
i=1

dx(i)dp
(i)
⊥ A+δ

(
A+ −

A∑
i=1

p
(i)
+

)
δ(2)

(
A⊥ −

A∑
i=1

p
(i)
⊥

)
×

B+δ

(
B+ −

B∑
i=1

p
(i)
+

)
δ(2)

(
B⊥ −

B∑
i=1

p
(i)
⊥

)
× (5.4)

×Ψ̄C([p
(i)′

+ ,p
(i)′

⊥ ])MABC([p
(i)′

+ ,p
(i)′

⊥ ]; [q
(i)′

+ ,q
(i)′

⊥ ]; [p
(i)
+ ,p

(i)
⊥ ])×

×Ψ̄A([p
(i)
+ ,p

(i)
⊥ ])Ψ̄B([p

(i)
+ ,p

(i)
⊥ ]).
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Here by A, B, C we denote hadrons A, B, C and the same time the number
of elementary constituents inside them and their 4-momenta;

x(i)′ =
p

(i)′

+

C+
; x(i) =

p
(i)
+

A+
; x(i) =

p
(i)
+

B+

q
(i)
+ , q

(i)
⊥ are components of 4-momenta of the constituents of undetected hadrons.

Let us assume that the states A and C occur in the same sybsystem of M
constituents and use pairwise approximation for the transition operator MABC .
This is presented schematically in the Fig.6.

Fig. 6.

MiB is the transition operator corresponding to the collision of the i-th
constituent of hadron A with hadron B.

In this approximation the transition amplitude (5.4) takes the form:

T (AB → C) = [2(2π)N−M−1]×

×
C∑
i=1

∫ C∏
i=1

dx(i)x(i)dp
(i)
⊥ δ

(
1−

C∑
i=1

x(i)

)
δ(2)

(
C∑
i=1

p
(i)′

⊥

)
×

×Ψ̄C(x(1),p
(1)
⊥ − x

(1)∆⊥; ...;x(i), (1 − x(i))∆⊥; ...;x(c),p
(c)
⊥ − x

(c)∆⊥)×
(5.5)

×Ψ̄A([x(1),p
(1)
⊥ ])TiB(B; [p

(i)′

+ ,p
(i)′

⊥ ]; [p
(i)′′

+ ,p
(i)′′

⊥ ]),

where: x(i) = p
(i)
+ /A+,

p
(i)′

+ = p
(i)
+ + x(i)/A+; p

(i)′

⊥ = p
(i)
⊥ + x(i)A⊥; ∆ = C −A

p
(i)′′

+ = p
(i)
+ + x(i)/C+; p

(i)′′

⊥ = p
(i)
⊥ + x(i)A⊥; (5.6)

TiB is the inelastic amplitude of the scattering of i-th constituent of hadron A
with hadron B.
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For the following we recall the calculations of the electromagnetic form
factors of composite systems. Rewrite the expression for the electromagnetic
form factor in the impulse approximation in the form:

eF (t) =
∑
n,i

ei

∫
dxS

(n)
i (x, (1 − x)∆⊥), t = (P − P ′)2 = −∆⊥)2,

where the quantity S(n)
i is deˇned as:

S
(n)
i (x, (1 − x)∆⊥) = [2(2π)3]n−1x

1∫
0

n∏
k=1
k 6=i

dx(k)x(k)δ

1− x−
n∑
k=1
k 6=i

x(k)

×

×
∫ n∏

k=1

dp
(k)
⊥ δ

(
n∑
k=1

p
(k)
⊥

)
Ψ̄(n)([x(k),p

(k)
⊥ − x

(k)∆⊥]k 6=i x,p
(i)
⊥ + (1− x)∆⊥)×

(5.7)

×Ψ̄(n)([x(k),p
(k)
⊥ ]).

Taking into account the normalization condition for wave functions one can

obtain the following normalization condition for S(n)
i :

∑
i

1∫
0

S
(n)
i (x,0⊥)dx = 1. (5.8)

In the case when the interaction of the i-th constituent of hadron A with hadron
B is effectively local [49] the transition amplitude T (AB → C) in the Eq. (5.5)
takes the form:

T (AB → C) =
∑
i

fi(∆⊥)TiB, (5.9)

where

f
(`)
i (∆⊥) =

1∫
0

dx

x
S

(`)
i (x, (1 − x)∆⊥)φ(x).

The function φ(x) characterizes the local interaction vertex and in the case
of the exchange of vectors particles (gluons), for instance, φ(x) = x. In this case
Eq. (5.9) takes the form:

T (AB → C) =
∑
i

Fi(∆⊥)TiB , (5.10)
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where
∑
i

Fi(∆⊥) = FA(∆⊥) is the form factor of particle A, TiB is the transition

amplitude.
For the inclusive cross section one obtains:

E
dσ(AB → A)

dp
=
∑
i

F 2
A(t)E

dσiB→i+x

dp
(s′, t′, u′). (5.11)

Here s′, t′, u′ are the Mandelstam invariant variables for the subprocess.

Fig. 7.

5.3. Production of Hadron Systems
with Large Transverse Momenta. Con-
sider now the possibility when the tran-
sition operator takes into account inter-
action between some systems of con-
stituents of hadrons A and B. Schemati-
cally this process is presented in Fig.7.

Let us assume that the wave func-
tion of the hadron A contains α+ ` con-
stituents, the wave function of hadron B contains β+`′ constituents and γ = `+`′.
In this approximation the transition amplitude takes the form:

T (A,B; [p
(i)
+ ,p

(i)
⊥ ]; [p

(i)′

+ ,p
(i)′

⊥ ]; [k
(i)
+ ,k

(i)
⊥ ]) =

= [2(2π)]α+β+γ−1

∫ `−1∏
i=1

dx(i)′dk
(i)′

⊥

γ−1∏
i=`+1

dx(i)′dk
(i)′

⊥ ×

×
α∏
i=1

p
(i)
+

A+

β∏
i=1

p
(i)′

+

B+
MA′B′([k

(i)
+ ,k

(i)
⊥ ]

i=1,...,γ

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...,γ

)×

×Ψ
(β+`′)
B ([p

(i)′

+ ,p
(i)′

⊥ ]
i=1,...,β

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=`+1,...,γ

)Ψ
(β+`′)
A ([p

(i)
+ ,p

(i)
⊥ ]

i=1,...,α

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...,`

)

x(i)′ =

{
k

(i)′

+ /A+, i = 1, ..., `

k
(i)′

+ /B+, i = `+ 1, ..., γ.

MA′B′ is the transition operator of two interacting subsystems A′ and B′. Let
us connect the transition operatorMA′B′ with the transition operator MA′B′→C′D′
corresponding to inelastic ®two-body¯ scattering (Fig.8). Here GC′ and GD′ are
the Green functions of the subsystems C′ and D′.
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Fig. 8.

Using spectral properties of the Green functions GC′ and GD′ and restricting
to the ®one-particle¯ contributions one can represent the operator MA′B′ in the
form:

MA′B′([k
(i)
+ ,k

(i)
⊥ ]

i=1,...,γ

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...,γ

) = [2(2π)3]γ−2
δ∏
i=1

k
(i)
+

C+

δ∏
i=δ+1

k
(i)
+

D+
×

×ΨC′([k
(i)
+ ,k

(i)
⊥ ]

i=1,...,δ

; )ΨD′([k
(i)
+ ,k

(i)
⊥ ]

i=δ+1,...,γ

; )

δ−1∏
i=1

dx(i)′′dk
(i)′′

⊥

γ−1∏
i=δ+1

dx(i)′′dk
(i)′′

⊥ ×

×ΨC′([k
(i)′′

+ ,k
(i)′′

⊥ ]
i=1,...,δ

; )ΨD′([k
(i)′′

+ ,k
(i)′′

⊥ ]
i=δ+1,...,γ

; )MA′B′C′D′([k
(i)′′

+ ,k
(i)′′

⊥ ]
i=1,...,γ

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...,γ

),

where x(i)′′ =

{
k

(i)′′

+ /C+, i = 1, ..., δ

k
(i)′′

+ /D+, i = δ + 1, ..., δ.

This approximation corresponds to the pole contribution in the spectral rep-
resentation for the Green functions of A′, B′, C′, D′ states and switching off the
interactions with (A−A′) and (B −B′) subsystems. In the same approximation
the wave functions ΨA and ΨB can be represented in the form:

Ψ
(α+`)
A ([p

(i)
+ ,p

(i)
⊥ ]

i=1,...α

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...,`

) ∼

∼ (A+/A
′
+)`−1ΨAA′([p

(i)
+ ,p

(i)
⊥ ]

i=1,...α

ΨA`′([k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...`

,

where ΨA`′([k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...`

) is the usual light-front wave function of the system A′,

ΨAA′([p
(i)
+ ,p

(i)
⊥ ]

i=1,...α

) is deˇned as:

ΨAA′([p
(i)
+ ,p

(i)
⊥ ]

i=1,...α

)δ

(
A+ −A′+ −

α∑
i=1

p
(i)
+

)
δ(2)

(
A⊥ −A′⊥ −

α∑
i=1

p
(i)
⊥

)
=
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=

∫ α∏
i=1

dx
(i)
− dx

(i)
⊥ exp

[
i

α∑
i=1

(p
(i)
+ x

(i)
− − p

(i)
⊥ x

(i)
⊥ )

]
〈A′|ψ1(x(1)

µ ...ψα(x(α)
µ )|A〉.

(5.12)

It is seen from the deˇnition that ΨAA′ is the ®one-time vertex function¯.
Schematically the approximations made can be represented in the form (Fig.9).

Fig. 9.

Corresponding expression for the scattering amplitude takes the form:

T (A,B; [p
(i)
+ ,p

(i)
⊥ ]

i=1,...α

; [p
(i)′

+ ,p
(i)′

⊥ ]
i=1,...β

; [k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...γ

) =

= [2(2π)]α+β+γ−2[2(2π)]γ−2
δ∏
i=1

k
(i)
+

C′+

γ∏
i=δ+1

k
(i)
+

D′+
×

×ΨC′([k
(i)
+ ,k

(i)
⊥ ]

i=1,...,δ

ΨD′ [k
(i)
+ ,k

(i)
⊥ ]

i=1,...,γ

)×

×
{∫ δ−1∏

i=1

dx(i)′′dk
(i)′′

⊥

`−1∏
i=1

dx(i)′dk
(i)′

⊥

γ−1∏
i=1

dx(i)′dk
(i)′

⊥ ×

×ΨC′([k
(i)′′

+ ,k
(i)′′

⊥ ]
i=1,...,δ

ΨD′ [k
(i)′′

+ ,k
(i)′′

⊥ ]
i=δ+1,...,γ

)MA′B′C′D′([k
(i)′′

+ ,k
(i)′′

⊥ ]; [k
(i)′

+ ,k
(i)′

⊥ ])×

×ΨA`′ ([k
(i)′

+ ,k
(i)′

⊥ ]
i=1,...`

ΨB′(γ−`)[k
(i)′

+ ,k
(i)′

⊥ ]
i=`+1,...γ

)

}
ΨAA′([p

(i)
+ ,k

(i)
⊥ ]

i=1,...α

ΨBB′ [p
(i)′

+ ,p
(i)′

⊥ ]
i=`+1,...γ

)×

×
α∏
i=1

p
(i)
+

A+

β∏
i=1

p
(i)′

+

B+
, (5.13)
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where

x(i)′ =

{
k

(i)′

+ /A′+, i = 1, ..., `

k
(i)′

+ /B′+, i = `+ 1, ..., γ,

x(i)′′ =

{
k

(i)′′

+ /C′+, i = 1, ..., δ

k
(i)′′

+ /D′+, i = δ + 1, ..., γ.

The exppression in paranthesis in Eq. (5.14) is by the deˇnition the scattering
amplitude of the process A′B′ → C′D′. Finally for the scattering amplitude we
obtain:

T (A,B; [p
(i)
+ ,p

(i)
⊥ ]

i=1,...,α

; [p
(i)′

+ ,p
(i)′

⊥ ]
i=1,...,β

; [k
(i)
+ ,k

(i)
⊥ ]

i=1,...,γ

) =

= [2(2π)3]α+β+γ−2
δ∏
i=1

k
(i)
+

C′+

γ∏
i=δ+1

k
(i)
+

D′+
×

×ΨC′([k
(i)
+ ,k

(i)
⊥ ]

i=1,...,δ

ΨD′ [k
(i)′

+ ,k
(i)′

⊥ ]
i=δ+1,...,γ

)×

×T (A′B′ → C′D′)
α∏
i=1

p
(i)
+

A+

β∏
i=1

p
(i)′

+

B+
×

×ΨAA′([p
(i)
+ ,p

(i)
⊥ ]

i=1,...,α

ΨBB′ [p
(i)
+ ,p

(i)
⊥ ]

i=1,...,β

). (5.14)

Thus the transition amplitude is expressed through the scattering amplitude
T (A′B′ → C′D′) of constituents which in particular, can be quarks. This
mechanism corresponds to the production of jets.

Constructing the inclusive cross section of the process AB → c(C) we obtain:

EC
dσ(Ab→ c(C))

dC
=

1

4(2π)2s

∑
A′B′C′

∑
c(C)

∫
dxdp⊥dx

′dp′⊥
dk+

k+
(C+xx

′)−1×

×ρA′A (x,p⊥ −A⊥, α)ρB
′

B (x′,p′⊥ − x′B′⊥, β)x′′ρc
(C)

C (z,k⊥ − x′′C⊥, γ)×

×|T (A′B′ → C′D′)|2δ
[
A2 − α
A+

+
B2 − β
B+

+
C2 − γ
C+

+

+
1

k+
(s′ + t′ + u′ − c2 − k2 −A′2 −B′2)

]
dαdβdγ. (5.15)
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Here s′ = xx′s; t′ = x
x′ t; u

′ = x′

x′′ u. Summation is performed over all possible

intermediate states A′, B′, C′. The functions ρA
′

A , ρB
′

B , ρC
′

C are related to the
squares of the corresponding wave functions.

Neglecting all the terms in the argument of δ-function as compared to (s′ +
t′ + u′), and taking into account that transverse momenta in the functions ρ are
limited, in the limit of high energies (s → ∞) and large momentum transvers
(t/s→ const, u/s→ const) one obtains:

EC
dσ(AB → c(C))

C
=
s

π

∫
dxdx′dx′′

xx′

x′′2
ρA
′

A (x)ρB
′

B (x′)ρ
c(C)
C′ (x′)×

×dσ
dt′

(s′, t′, u′)δ(s′ + t′ + u′). (5.16)

In the case, when A′, B′, C′, D′ are quark states, corresponding quantities ρA
′

A ,
ρB
′

B go over to the corresponding quark distribution functions and dσ
dt′ goes over

to the quark-quark elastic cross section. Let us write ˇnally the relation of quark
distribution functions ρA to the light-front quasi-potential wave function:

ρ
(N−1)
A ([p

(+)
i ,p

(i)
⊥ ]

i=2,...,N

)
N∏
i=2

dx(i)dp
(i)
⊥ = [2(2π)3]N−2

∣∣∣∣∣Ψ(N−1)
A ([p

(i)
+ ,p

(i)
⊥ ]

i=2,...,N

)

∣∣∣∣∣
2

×

×A+

N∏
i=2

x(i)dx(i)dp
(i)
⊥ δ

(
A+ −

N∑
i=2

p
(i)
+

)
δ(2)

(
A⊥ −

N∑
i=2

p
(i)
⊥

)
. (5.17)
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